Causal Conceptions of Fairness and their Consequences

 $\bullet \bullet \bullet$

Hamed Nilforoshan*, Johann Gaebler*, Ravi Shroff, Sharad Goel

hamedn@cs.stanford.edu

jgaeb@stanford.edu

ravi.shroff@nyu.edu sgoel@hks.harvard.edu

(* equal contribution) [ACIC 2022 / ICML 2022]

Summary

• Unified taxonomy to understand *causal fairness* research field

Summary

• Unified taxonomy to understand *causal fairness* research field

 Prominent causal conceptions of algorithmic fairness, if implemented, can harm the groups they were designed to protect

E Test Score		
73		
65		
80		

Test Score	🐢 Race 🖗 Group	
73	Minority	
65	Majority	
80	Minority	

Test Score	con Race	Decision	
73	Minority	Ŕ	
65	Majority	×	
80	Minority	Ŕ	

Test Score	\infty Race 🖗 Group	Decision	Degree Attainment
73	Minority	Ŕ	
65	Majority	⊡ ×	A
80	Minority	l	\otimes

Decision

Test Score

Race

Decision

Class Diversity

Test Score

Race

Decision

Class Diversity

=

[Part 1: *causal fairness* overview + taxonomy]

Traditional fairness definitions

Anti-classification

Race feature should not be used in the decision-making

Causal Fairness Motivation

Race may still *indirectly* affect decisions

Causal Fairness Taxonomy

Family 1: Limit direct and indirect effects of race on decision

Traditional fairness definitions

Anti-classification

Race feature should not be used in the decision-making

> D(= 95, = Minority) = D(= 95, = Majority)

Classification parity

Decision

Error Rate Disparity

Model performance should be the same across groups

Precision = % of admits who successfully obtain a bachelor's degree

Traditional fairness definitions

Anti-classification

Race feature should not be used in the decision-making

Classification parity

Decision

Error Rate Disparity

Model performance should be the same across groups

Minority group precision = Majority group precision

Causal Fairness Motivation

Race may still *indirectly* affect decisions

altering error rates

20

Causal Fairness Taxonomy

Family 1: Limit direct and indirect effects of race on decision

Family 2: Model performance should be counterfactually equal between groups

Causal fairness taxonomy [see paper]

Family 1: Limit direct and indirect effects of race on decision

- Counterfactual fairness
- Path-specific fairness

Family 2: Limit counterfactual disparities between groups

- Counterfactual equalized odds
- Counterfactual predictive parity
- Principal fairness

Causal fairness taxonomy [see paper]

Family 1: Limit direct and indirect effects of race on decision

- Counterfactual fairness
- Path-specific fairness

Family 2: Limit counterfactual disparities between groups

- Counterfactual equalized odds
- Counterfactual predictive parity
- Principal fairness

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

same across groups

False positive rate (admits who did not graduate) should be equal between groups

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

same across groups

[Important caveat: counterfactuals of race are epistemologically problematic]

graduate) should be equal between groups

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

(real world)

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

[T* decreases due to reduced access to educational opportunities]

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

[T* decreases due to reduced access to educational opportunities]

Family 1: Limit direct and indirect effects of race on decision

Classification parity

Given a subset of applicants with the exact same feature values, admissions rate should not change *in a counterfactual world in which they belonged to a different race group*

[T* decreases due to reduced access to educational opportunities]

Part 2: What are the downstream consequences of causal fairness?

Pareto frontier: different people trade off degree attainment and diversity differently

Pareto frontier: different people trade off degree attainment and diversity differently

Pareto frontier: different people trade off degree attainment and diversity differently

Counterfactual Fairness Randomized Lottery

Decisions based exclusively on age

Proof sketch

D(T = Low, Race = Majority) D(T = Low, Race = Majority) D(T = Med., Race = Majority) D(T = Med., Race = Majority) D(T = High., Race = Majority) D(T = High., Race = Majority)

Proof sketch

Proof sketch

Causal fairness taxonomy [see paper]

Family 1: Limit direct and indirect effects of race on decision

- Counterfactual fairness
- Path-specific fairness

Family 2: Limit counterfactual disparities between groups

- Counterfactual equalized odds
- Counterfactual predictive parity
- Principal fairness

Key theoretical result #2

Key theoretical result #2

In *almost every* case (in a measure theoretic sense)...

• Causal fairness definitions lead to Pareto inefficient decisions, perversely harming the groups they were designed to protect

• Directly optimizing for desired outcomes (e.g. degree attainment, diversity) may be preferable

Thank You!

Full Paper

H. Nilforoshan*, J. Gaebler*, R. Shroff, & S. Goel. "Causal Conceptions of Fairness and their Consequences." *International Conference on Machine Learning* (ICML 2022).

[jgaeb.com [hamedn.com

jgaeb@stanford.edu] hamedn@cs.stanford.edu] 51

Assumptions

There is variance in the counterfactual distribution of covariates

Assumptions

There is variance in the counterfactual distribution of covariates

medium score

low score

high score

medium score

low score

high score

low score

high score

 $P(\square = low) = 0.05$ $P(\square = medium) = 0.05$ $P(\square = high) = 0.90$

low score

high score

 P(2 = low) = 0.05

 P(2 = medium) = 0.90

 P(2 = high) = 0.05

medium score

low score

high score

P(

P(🗐 = medium)

P(f) = low)

 $P(\Box = high)$

= 0.90

= 0.05

= 0.05

Simulation variables

