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A long-standing expectation is that large, dense, and cosmopolitan areas will support diverse
interactions and socioeconomic mixing1–6. It has been difficult to assess this hypothesis be-
cause past approaches to measuring socioeconomic mixing have relied on static residential
housing data rather than real-life interactions among people meeting at work, in places of
leisure, and in home neighborhoods7, 8. Here we develop a new measure of interaction seg-
regation (IS) that captures the economic diversity of the set of people that a given person
meets in their everyday life. Leveraging cell phone mobility data to represent 1.6 billion in-
teractions among 9.6 million people in the United States, we measure interaction segregation
across 382 Metropolitan Statistical Areas (MSAs) and 2829 counties. When averaged across
all MSAs, interaction segregation is 38% lower than a conventional static estimate, which
means that people meet diverse others mostly when outside their home neighborhoods. But,
we also find that interaction segregation is 67% higher in the 10 largest Metropolitan Statis-
tical Areas (MSAs) than in small MSAs with fewer than 100,000 residents. We find evidence
that because large cities can offer a greater choice of differentiated spaces targeted to specific
socioeconomic groups, they end up promoting—rather than reducing—everyday economic
segregation. We also discover that this segregation-increasing effect is countered when hubs
of interaction (e.g. shopping malls) are positioned to bridge diverse neighborhoods and thus
attract people of all socioeconomic statuses. Overall, our findings challenge a long-standing
conjecture in human geography and urban design, and highlight how built environment can
both prevent and facilitate diverse human interactions.
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Introduction1

In the U.S., economic segregation is very high, with income affecting where one lives9, who2

one marries10, and who one meets and befriends11. This extreme segregation is costly: it re-3

duces economic mobility12–15, fosters a wide range of health problems16, 17, and increases political4

polarization18. Although there are all manner of reforms designed to reduce economic segregation5

(e.g. subsidized housing), it has long been argued that one of the most powerful segregation-6

reducing dynamics is rising urbanization19 and the happenstance mixing that it induces1–6.7

As plausible as this “cosmopolitan mixing hypothesis” might seem, big cities also provide8

new opportunities for self-segregation, given that they’re large enough to allow people to seek out9

and find others like themselves20. These contrasting hypotheses about the effects of urbanization on10

interaction remain untested because it has been difficult to measure real-world interaction among11

individuals. In most cases, analysts have treated residential housing segregation as a proxy for12

the diversity of interaction7, 21–23, an approach that rests on the implausible assumption that people13

interact uniformly with those in their neighborhood and do not interact with anyone outside their14

neighborhood.15

To understand how urbanization affects segregation, we instead need a measure that captures16

where people go, when they go there, and with whom they come into contact. We introduce a17

measure of interaction segretation (IS) by leveraging anonymized cell phone geolocation data to18

construct a fine-grained, dynamic network that captures 1.6 billion physical interactions (i.e. path-19

crossings) between 9.6 million people in the United States. These data are used to define a measure20

of interaction segregation (IS) that extends a traditional static segregation measure by capturing21

actual interactions in a given geographic area. In recent years, cell phone networks have been used22

for many research purposes24–32, but a nationwide study of economic mobility and urbanization23

has not been undertaken because of difficulties in ascertaining individual-level economic status,24

determining when dyadic interactions occur, and amassing the data needed to compare across cities25

or counties24–26, 28–32. We undertake the first credible test of the “cosmopolitan mixing hypothesis”26

and the mechanisms underlying it by using cell phone data to link geolocated interactions with27

individual-level economic status in 382 MSAs and 2829 counties.28
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Results29

We estimate interaction segregation (IS), defined as the extent of contact between individuals of30

different economic statuses, for each geographic area in the U.S. (e.g. MSA, county). This en-31

tails building a dynamic interaction network with 9,567,559 nodes (representing individuals) and32

1,570,782,460 edges (representing interactions/path-crossings in the physical space).33

Developing a more realistic measure of socioeconomic segregation. To estimate each per-34

son’s economic standing (ES), we first infer their night-time home location from cell phone mo-35

bility data, and we then recover the estimated monthly rent value of the home at this location36

(Methods M2). This method is more accurate than the convention of proxying individual ES with37

neighborhood-level Census averages26, 27. The economic segregation of each geographic region is38

measured by the correlation between a person’s ES and the mean ES of everyone with whom they39

interact. This correlation is estimated by fitting a linear mixed effects model that eliminates atten-40

uation bias (Methods M3). The resulting measure of interaction segregation (Figure 1a-c), which41

ranges from 0 (perfect integration) to 1 (complete segregation), is a generalization of a widely42

used measure of socioeconomic segregation, the Neighborhood Sorting Index (NSI)7. The NSI is43

equivalent to the correlation between each person’s ES and the mean ES of all people in their Cen-44

sus tract, whereas the IS is equivalent to the correlation between each person’s ES and the mean45

ES of all people with whom they have interacted, either inside or outside their census tract. Like46

the NSI, the IS measures cross-class contact of any type, rather than ties that are persistent and47

possibly stronger (such as friendship ties)11.48

Interaction segregation is lower than previously estimated. We find that the median inter-49

action segregation across all MSAs is 38% (p<10−4, 95% confidence interval 37%−41%) lower50

than a conventional static estimate (NSI; Figure 1d top). To understand why, we examine how51

segregation differs by interaction location (Figure 1d bottom). We find that interactions that oc-52

cur when both people are within their home Census tract are 41% (p<10−4, 95% CI 38%−44%)53

more segregated than under the hypothetical that residents interact uniformly with all people in the54
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Figure 1: Interaction segregation (IS) captures the likelihood of contact between people of different economic
backgrounds. (a) For 9.6 million individuals (i.e. cell phones), we infer economic standing (rent or rent equivalent)
from home address, based on location at night. We then leverage anonymized cell phone mobility data to identify
interactions between pairs of individuals (where two individuals are defined to interact if they were within D meters
of each other within less than T minutes). D = 50 and T = 5 in our primarily analysis; results are robust to the
precise choice of D and T (Methods M1-M2, Supplementary Figure S5-S8). (b) The nationwide network of 1.6 billion
interactions spans 2829 counties and 382 Metropolitan Statistical Areas (MSAs). Our interaction network contrasts
with a conventional measure of economic segregation, the Neighborhood Sorting Index, which assumes that people
interact uniformly and only with other residents of their home Census tract. Graphs based on a sample community
of 50 individuals from San Francisco, CA residing in 10 different census tracts. Nodes are individuals; edges are
interactions. As this sample illustrates, most interactions happen when both persons are away from their home tract.
These cross-tract interactions are undetected by conventional segregation measures. (c) For each geographic region
(e.g. MSA, county), we estimate interaction segregation, defined as the correlation between an individual’s economic
standing (ES) and the mean ES of those with whom they interact. 1 signifies perfect segregation; 0 signifies no
segregation. This definition is equivalent to the conventional Neighborhood Sorting Index (NSI), but with the key
difference that it leverages real-life interactions from mobility data instead of synthetic interactions from individuals
grouped by Census tracts. For two MSAs, we show the raw data; each point represents one individual. San Francisco-
Oakland-Hayward, CA is 2.2× (p<10−4, 95% CI 1.6−2.8×) more segregated than Napa, CA. (d) Top: Interaction
segregation is 38% (p<10−4, 95% CI 37%−41%) lower than the conventional segregation measure NSI. Each point
represents the interaction segregation estimate in one MSA; vertical colored lines represent median across MSAs.
Bottom: breaking down interaction segregation into component parts. Interactions where both people are within their
home Census tract (green) are most segregated, reflecting the homophily effect in which people preferentially interact
with those of similar ES in their home tracts. Out-of-tract interactions (orange and red) are less segregated, reflecting
the visitor effect in which visiting other tracts exposes individuals to economically diverse individuals. Because a
small minority (2.4%, 95% CI 2.4%−2.4%) of interactions happen within home tract, the visitor effect dominates the
homophily effect and thus interaction segregation is lower than conventional NSI. (e) Interaction segregation varies
by location type. Each point represents segregation in one MSA using only interactions occurring in a given location
type; boxes indicate the interquartile range across MSAs. Segregation is highest at golf courses and country clubs
(median IS 0.42), and lowest at performing arts centers (median IS 0.16) and stadiums (median IS 0.17).
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same tract (as the NSI assumes). This result illustrates the homophily effect: even within their own55

neighborhood, people interact with neighbors who are socioeconomically most similar to them.56

By contrast, interactions where one or both individuals are outside of their home tract are far less57

segregated (i.e. 44% (p<10−4, 95% CI 41%−46%) less segregated when one person is outside58

of home tract and 50% (p<10−4, 95% CI 48%−53%) less segregated when both people are out-59

side home tract), meaning that people interact with more heterogeneous populations when they60

visit non-home tracts for work, leisure, or other activities. We refer to this phenomenon as the61

visitor effect. Because within-home-tract interactions constitute a small minority (2.4%, 95% CI62

2.4%−2.4%) of interactions compared to out-of-tract interactions, the visitor effect dominates the63

homophily effect and interaction segregation is lower than conventional static measures imply.64

Interaction segregation varies across leisure sites. We validate and explore the IS metric by65

measuring variability in interaction segregation across different points of interest (POIs). We do so66

by filtering for interactions that occur within a single POI category and re-applying our same mixed67

model (Methods M3; Figure 1e). The resulting estimates show, for instance, that golf courses and68

country clubs have over 2.6× (p<10−4, 95% CI 2.2×-2.9×) higher interaction segregation than69

performing arts centers (in the median MSA). We find that the degree to which POIs service small70

and thereby socioeconomically homogeneous communities (measured by average travel distance71

to nearest POI and # of POIs) explains much of this variability in POI-level segregation (Spearman72

Corr. -0.75, p<0.001 for travel distance, Spearman Corr. 0.69, p<0.01 for # of POIs, Extended73

Data Figure 2a,b). The POIs that are numerous, embedded locally within residential communities,74

and thereby serve economically differentiated communities (e.g. religious organizations) tend to75

be more segregated than larger POIs that are designed to serve the entire city (e.g. stadiums). For76

instance, in the median MSA, religious organizations require 92% (p<10−4, 95% CI 92%−93%)77

less travel distance and are 16× (p<10−4, 95% CI 8×−18×) more numerous than stadiums, and78

are thus 75% (p<10−4, 95% CI 58%−87%) more segregated. In rare cases, a POI with few venues79

may still be highly segregated (i.e. golf courses have significantly higher (all p<10−4) segregation80

than all other POI categories in Figure 1e despite there being only 2 golf courses in the median81
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MSA) because cross-venue economic differentiation is generated through other mechanisms, such82

as a public-private distinction (Extended Data Figure 2c).83

Large cities facilitate segregation. We discover that interaction segregation is higher in large84

MSAs (Figure 2), which directly undermines the “cosmopolitan mixing hypothesis”. The Spear-85

man correlation between MSA population and MSA segregation is 0.62 (p<10−4), and the 1086

largest MSAs by population size are 67% (p<10−4, 95% CI 49-87%) more segregated than small87

MSAs with less than 100,000 residents. This result is robust: we validate it by recalculating88

the correlation with a measure of density rather than population size (Spearman Correlation 0.45,89

p<10−4, Supplementary Table S7), by controlling for relevant covariates (Extended Data Table90

1 and Supplementary Table S7), by varying the granularity of the analysis (Figure 2b, Extended91

Data Figure 3), and by testing a variety of specifications of interaction segregation (Supplementary92

Table S6, Supplementary Figures S2-S8). The consistent result that larger, denser cities are more93

segregated runs counter to the hypothesis that such cities facilitate diverse social interactions by94

attracting liberal cosmopolitans and by constraining space in ways that oblige diverse individuals95

to come into contact with each other1–6. Our results support the opposite hypothesis: big cities96

allow their inhabitants to seek out people who are more like themselves.97

Mechanisms producing higher interaction segregation in larger metropolitan areas. To un-98

derstand why large metropolitan areas support these homophilous tendencies, it is useful to ex-99

plore interaction segregation within leisure POIs as a case study. Full-service restaurants provide100

an illustrative example (Figure 2c,d,e) of a segregation-inducing dynamic that holds widely across101

other leisure sites (Supplementary Figure S20) and scales (Extended Data Figure 4-5). We find102

that larger MSAs offer their residents a greater number of leisure choices: the average resident of103

one of the 10 largest MSAs has 22× (p<10−4, 95% CI 11-39×) more restaurants within 10 kilo-104

meters of their home than an average resident of a small MSA (where a “small MSA” is defined as105

one with less than 100,000 residents; Figure 2c). These choices are also more socioeconomically106

differentiated. When a restaurant’s ES is defined as the median ES of all people who cross paths107
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(a) (b) 

HighestLowest

Interaction Segregation

Spearman Corr. 0.62

(c)                            (d)          (e)

(f)                            (g)          (h)
Figure 2: Highly-populated metropolitan areas are more segregated due to socioeconomic differentiation of
spaces. Contrary to the hypothesis that highly-populated metropolitan areas support diverse interactions and socioe-
conomic mixing, we find that (a) Larger MSAs are more segregated. Interaction segregation presented as a function
of population size; each dot represents one MSA; purple line indicates LOWESS fit. Upward trend reveals that urban-
ization is associated with higher interaction segregation (Spearman Correlation 0.62, N=382, p< 10−4). The top 10
largest MSAs, by population size, are 67% more segregated than small MSAs with less than 100,000 residents. As-
sociations are robust to controlling for potential confounders and are similar for population density and IS (Extended
Data Table 1, Supplementary Table S7). (b) Interaction segregation across the 2829 US counties. Analysis limited to
counties with at least 50 individuals. Interaction segregation varies significantly across counties in the United States.
Moreover, as with MSA-level, county-level interaction segregation is also positively associated with both population
size and population density (Extended Data Figure 3). (c-e) A case study of full-service restaurants illustrates the
mechanism through which urbanization produces interaction segregation. Highly-populated metropolitan areas are
more segregated not only because they offer a wider choice of venues but also because these venues are more socioe-
conomically differentiated (e.g. in New York City, one can spend $10, $100, or $1000 on a meal, depending on the
choice of restaurant33, 34). (c) Larger MSAs have more restaurants within 10 kilometers of the average resident, giving
residents more options to self-segregate. (d) Moreover, restaurants in larger MSAs vary more in the median ES of their
visitors, offering a greater choice of socioeconomically differentiated restaurants. The coefficient of variation across
restaurant ES in 10 largest MSAs is 63% (p<10−4, 95% CI 37-100%) more than the coefficient of variation in small
MSAs (with fewer than 100,000 residents). (e) Consequently, interaction segregation within restaurants is higher in
larger MSAs. These relationships are also detectable at the scale of interaction hubs (i.e. higher-level clusters of POIs
such as plazas and shopping malls) as well as at the neighborhood level (Extended Data Figures 4-5).
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within it, the coefficient of variation of “restaurant ES” in the 10 largest MSAs is 63% (p<10−4,108

95% CI 37-100%) larger than that in small ones (Figure 2d). Thus, large MSAs not only offer109

their residents a larger choice of restaurants, but these restaurants are also more socioeconomically110

differentiated. These processes combine to increase interaction segregation by 29% (p<10−3, 95%111

CI 8-49%) at restaurants in the 10 largest MSAs relative to those in small MSAs (Figure 2e). We112

also find analogous results at higher levels of scale: interaction hubs (e.g. plazas, malls, shopping113

centers, boardwalks) (Extended Data Figure 4) as well as neighborhoods (Extended Data Figure114

5) and across different many POI types (Supplementary Figure S20).115

Mitigating segregation via urban design. Our results so far suggest that segregation could be116

mitigated via urban design by placing POIs of high interaction to act as bridges between diverse117

neighborhoods, which would allow residents of nearby high-ES and low-ES neighborhoods to eas-118

ily visit and interact (Figure 3c)35–37. We develop the Bridging Index (BI; Methods M3) to assess119

whether interaction hubs (i.e. highly-visited POIs) are located in such bridging positions. This in-120

dex, which measures the economic diversity of the groups that would interact if everybody visited121

only their nearest hub, is computed by clustering individuals by the nearest hub to their home and122

then measuring the economic diversity within these clusters (Extended Data Figure 6). The result-123

ing index ranges from 0 to 1, where 0 means that individuals near each hub have uniform ES, and124

1 means that individuals near each hub are as diverse as the overall area (Extended Data Figure 7).125

We compute BI for commercial centers (e.g. plazas, malls, shopping centers, boardwalks) because126

we find that they are common hubs of interaction: the majority (56.9%, 95% CI 56.9%-56.9%) of127

interactions across all 382 MSAs occur in close proximity (within 1km) of a commercial center,128

even though only 2.5% of land area is within 1km of a commercial center. (see Figure 3c). The re-129

sults show that BI is strongly associated with interaction segregation (Spearman Correlation -0.78,130

p< 10−4; Figure 3d). The top 10 MSAs with the highest BI are 53.1% (p<10−4, 95% CI 44-60%)131

less segregated than the 10 MSAs with the lowest BI. This finding is again robust: the effect of BI132

is strong and significant (p<10−4) even after including controls for race, population size, economic133

inequality, and many other variables (Extended Data Tables 2 and 3; see also Supplementary Table134
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S6; Supplementary Figures S2 and S8; Supplementary Figure S11). It follows that policies that135

encourage developers to locate hubs such as commercial centers between diverse residential neigh-136

borhoods (e.g. zoning laws or subsidies) may reduce interaction segregation. We have identified137

several large cities that increase integration in this way (Supplementary Table S8) and present an138

illustrative example (Figure 3c-d) in which well-placed interaction hubs bridge diverse individuals139

in Fayetteville, North Carolina.140
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Figure 3: Interaction segregation is lower when interaction hubs bridge socioeconomically-diverse neighbor-
hoods. (a) We develop a Bridging Index (BI) that quantifies the extent to which interaction hubs bridge socioeconomi-
cally diverse neighborhoods. The metric is constructed by clustering homes by nearest interaction hub, then measuring
the within-cluster diversity of ES (Methods M3). Two plots illustrate that BI is distinct from a conventional residential
measure of segregation (i.e. Neighborhood Sorting Index). BI ranges from 0.0 (no bridging; top) to 1.0 (perfect bridg-
ing; bottom) while residential segregation is constant (high and low-ES individuals are highly segregated by census
tract, denoted by purple and yellow bounding boxes). We compute BI with hubs of interaction defined as commercial
centers (e.g. shopping malls, plazas) because the majority (56.9%, 95% CI 56.9%-56.9%) of interactions across all
382 MSAs occur in close proximity (within 1km) of a commercial center, even though only 2.5% of land area is
within 1km of a commercial center. (b) BI strongly predicts interaction segregation (Spearman Correlation −0.78,
N=382, p< 10−4). The top 10 MSAs with the highest BI are 53.1% (p<10−4, 95% CI 44-60%) less segregated
than the 10 MSAs with lowest BI. Bridging Index predicts segregation more accurately (p<10−4) than population
size, ES inequality, NSI, and racial demographics, and is significantly (p<10−4) associated with interaction segrega-
tion after controlling for these variables and other potential confounders (Extended Data Tables 2-3). (c-d) A case
study of Fayetteville, NC, an MSA with low interaction segregation (21st percentile) despite having above-median
population size (64th percentile) and income inequality (60th percentile). (c) Interaction heat map of Fayetteville;
all visually discernible hubs are associated with one or more commercial centers. (d) Interaction hubs are located
in accessible proximity to both high and low ES census tracts (Bridging Index = 0.90, 62nd percentile), leading to
diverse interactions. An illustrative example of one hub (Highland Center) in Fayetteville and a random sample of
10 interactions occurring inside of it. Home icons demarcate individual home location (up to 100m of random noise
added for anonymity); colors denote individual and mean tract ES.
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Discussion141

As big cities continue to grow and spread, it is important to ask whether they are increasing socioe-142

conomic mixing. Although it is often argued that big cities promote mixing by increasing density,143

in fact we find that interaction diversity and city size are negatively related. We find that the key144

mechanism here is scale. Because large cities can sustain venues that are targeted to thin socioe-145

conomic slices of the population, they have become homophily-generating machines that are more146

segregated than small cities. We also find that some cities are able to mitigate this segregative147

effect because their interaction hubs are located in bridging zones that can draw in people from148

diverse neighborhoods. We were able to detect these pockets of homophily (and the counteracting149

effects of bridging hubs) because we have developed a dynamic measure of economic segregation150

that captures everyday interactions at home, work, and leisure.151

This new methodology for measuring interaction segregation, while an important improve-152

ment over conventional static approaches, has limitations. We use close physical proximity as a153

proxy for interaction. It is reassuring, however, that our core results persist under stricter time,154

distance, and tie-strength thresholds (Supplementary Table S6, Supplementary Figures S5-S8).155

It is likewise important to locate and analyze supplementary datasets that cover subpopulations156

(e.g., homeless subpopulations) that aren’t as well represented in our dataset38. The available evi-157

dence indicates that our sample is representative on many key racial, economic, and demographic158

variables39, but cellphone market penetration is still not complete. Lastly, our measure of eco-159

nomic standing relies on housing consumption, an indicator that does not exhaust the concept160

of economic status. It is again reassuring that our analytic approach, which improves on conven-161

tional neighborhood-level imputations, is robust under a range of alternative measures of economic162

standing (Supplementary Figure S3).163

Our work advances the usual static approach to measuring economic segregation to using164

large-scale mobility data and develops a dynamic notion of quantifying segregation and diversity165

of mixing between people. The dynamic approach that we have taken here could further be ex-166

tended to examine cross-population differences in the sources of segregation and to develop a more167

complete toolkit of approaches to reducing segregation and improving urban design.168
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36. Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility
and migration patterns. Nature 484, 96–100 (2012).
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Methods169

In Methods M1, we explain the datasets used in our analysis; in Methods M2, we explain data pro-170

cessing procedures we leverage to infer economic standing and interactions; and in Methods M3,171

we explain the analysis underlying our main results.172

M1 Datasets173

SafeGraph174

Our primary mobility and location data comprise GPS locations from a sample of adult smartphone175

users in the United States, provided by the company SafeGraph. The data are anonymous GPS176

location pings from smartphone applications which are collected and transmitted to SafeGraph177

by participating users40. While the sample is not random sample, prior work has demonstrated178

that SafeGraph data is geographically representative (e.g. an approximately unbiased sample of179

different census tracts within each State), and well-balanced along the dimensions of race, in-180

come, and education39, 42. Furthermore, SafeGraph data is a widely used standard in large-scale181

studies of human mobility across many different areas including COVID-19 modeling42, polit-182

ical polarization43, and tracking consumer preferences44. All data provided by SafeGraph was183

anonymized, does not contain any identifying information, and was stored on a secure server be-184

hind a firewall. Data handling and analysis was conducted in accordance with SafeGraph policies185

and in accordance with the guidelines of the Stanford University Institutional Review Board.186

The raw data consists of 91,755,502 users and 61,730,645,084 pings (one latitude and lon-187

gitude for one user at one timestamp) from three evenly spaced months in 2017: March, July, and188

November. The mean number of raw pings associated with a user is 667 and the median num-189

ber of pings is 12. We apply several filters to improve the reliability of the SafeGraph data, and190

subsequently link each user to an estimated rent (i.e. Zillow Zestimate) using their inferred home191

location (i.e. CoreLogic address), as described in Methods M2.192

We apply several filters to improve the reliability of the SafeGraph data. To ensure locations193

are reliable, we remove pings whose location is estimated with accuracy worse than 100 meters as194

recommended by SafeGraph45. We filter out users with fewer than 500 pings, as these are largely195
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noise. Since we incorporate a user’s home value and rent in measuring their economic standing,196

we filter out users for whom we are unable to infer a home. Finally, to avoid duplicate users, we197

remove users if more than 80% of their pings have identical latitudes, longitudes, and timestamps to198

those of another user; this could potentially occur if, for example, a single person in the real world199

carries multiple mobile devices. After the initial filters on ping counts and reliability, we are able200

to infer home locations for 12,805,490 users in the United States (50 states and Washington D.C.),201

leveraging the CoreLogic database. Of users for whom we can infer a home location, we are able202

to successfully link 9,576,650 to an estimated rent value via the Zillow API. Section Methods M2203

provides full details on the use of CoreLogic database to infer home locations and the use of the204

Zillow API to link these home locations to estimated rent values. Finally, after removing users205

where > 80% of their pings are duplicates with another user, we reduce the number of users from206

9,576,650 to 9,567,559 (i.e., we remove about 0.1% of users through de-duplication).207

CoreLogic208

We use the CoreLogic real estate database to link users to home locations46. The database provides209

information covering over 99% of US residential properties (145 million properties), over 99% of210

commercial real estate properties (26 million properties), and 100% of US county, municipal, and211

special tax districts (3141 counties). The CoreLogic real estate database includes the latitude and212

longitude of each home, in addition to its full address: street name, number, county, state, and zip213

code.214

Zillow215

We use the Zillow property database to query for rent estimates47 (our primary measure of eco-216

nomic standing). The Zillow database contains rent data (”rent Zestimate”) for 119 million US217

residential properties. We were able to determine a rent Zestimate, the primary measure of eco-218

nomic standing (ES) used in our analysis, for 9,576,650 out of 12,183,523 inferred SafeGraph user219

homes (a 79% hit rate).220
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SafeGraph Places221

Our database of US business establishment boundaries and annotations comes from the SafeGraph222

Places database40, which indexes the names, addresses, categories, latitudes, longitudes, and geo-223

graphical boundary polygons of 5.5 million US points of interest (POIs) in the United States. Safe-224

Graph includes the NAICS (North American Industry Classification System) category of each POI,225

which is standard taxonomy used by the Federal government to classify business establishments48.226

For instance, the NAICS code 722511 indicates full service restaurants. We identify relevant227

leisure sites using the prefixes 7, which includes arts, entertainment, recreation, accommodation,228

and food services, and supplement these POIs with the prefix 8131 to include religious organiza-229

tions such as churches. We restrict our analysis of leisure sites to the top most frequently visited230

POI categories within these NAICS code prefixes (Figure 1d): full service restaurants, snack bars,231

limited-service restaurants, stadiums, etc. SafeGraph Places also includes higher-level “parent”232

POI polygons which encapsulate smaller POIs. Specifically, we identified interaction hubs with233

the NAICS code 531120 (lessors of non-residential real estate) which we find in practice corre-234

sponds to commercial centers such as shopping malls, plazas, boardwalks, and other clusters of235

businesses. We provide illustrative examples of such interaction hubs in Supplementary Figures236

S14-S16.237

US Census238

We extract demographic and geographic features from the 5-year 2013-2017 American Commu-239

nity Survey (ACS)49. This allows us, as described below, to link cell phone locations to geographic240

areas including census block group, census tract, and Metropolitan Statistical Area (MSA), as241

well as to infer demographic features corresponding to those demographic areas including median242

household income.243

A census block group (CBG) is a statistical division of a census tract. CBGs are generally244

defined to contain between 600 and 3,000 people. A CBG can be identified on the national level245

by the unique combination of state, county, tract, and block group codes.246

A census tract is a statistical subdivision of a county containing an average of roughly 4,000247

16



inhabitants. Census tracts range in population from 1,200 to 8,000 inhabitants. Each tract is248

identified by a unique numeric code within a county. A tract can be identified on the national level249

by the unique combination of state, county, and tract codes.250

Census tracts and block groups typically cover a contiguous geographic area, though this is251

not a constraint on the shape of the tract or block group. Census tract and block group boundaries252

generally persist over time so that temporal and geographical analysis is possible across multiple253

censuses.254

Most census tracts and CBGs are delineated by inhabitants who participate in the Census255

Bureau’s Participant Statistical Areas Program. The Census Bureau determines the boundaries256

of the remaining tracts and block groups when delineation by inhabitants, local governments, or257

regional organizations is not possible 50.258

A Metropolitan Statistical Area (MSA) is a US geographic area defined by the Office of259

Management and Budget (OMB) and is one of two types of Core Based Statistical Area (CBSA).260

A CBSA comprises a county or counties associated with a core urbanized area with a population261

of at least 10,000 inhabitants and adjacent counties with a high degree of social and economic262

integration with the core area. Social and economic integration is measured through commuting263

ties between the adjacent counties and the core. A Micropolitan Statistical Area is a CBSA whose264

core has a population of between 10,000 and 50,000; a Metropolitan Statistical Area is a CBSA265

whose core has a population of over 50,000. In our primary analysis, we follow Athey et al51
266

and focus on Metropolitan Statistical Areas, excluding Micropolitan Statistical Areas due to data267

sparsity concerns.268

TIGER269

Road and transportation feature annotations come from the Census-curated Topologically Inte-270

grated Geographic Encoding and Referencing system (TIGER) database52. The TIGER databases271

are an extract of selected geographic and cartographic information from the U.S. Census Bureau’s272

Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER)273

Database (MTDB). We use the MAF/TIGER Feature Class Code (MTFCC) from the TIGER Roads274
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and TIGER Rails databases to identify road and railways. TIGER data is in the format of Shape-275

files, which provide the exact boundaries of roads and railways as latitude/longitude coordinates.276

M2 Data processing277

For each individual, we first infer their home location and subsequently estimate economic standing278

based on their home rent value (see Inferring home location and subsequently Inferring economic279

standing). We then calculate all interactions between individuals (see Constructing interaction280

network), which we then annotate based on the location, i.e. if the interaction occurred in both,281

one, or neither individual’s home tract, and whether it occurred inside of a fine-grained POI such282

as a specific restaurant or a “parent” POI such as an interaction hub (see Annotating interactions).283

Details on all inferences and interaction calculations are provided below.284

Inferring home location285

We first infer a user’s home latitude and longitude using the latitude and longitude coordinates of286

their pings during local nighttime hours, based on best practices established by SafeGraph53. We287

first remove users with fewer than 500 pings to ensure that we have enough data to reliably infer288

home locations. We then interpolate each person’s location at each hour (eg, 6 PM, 7 PM, and 8289

PM) using linear interpolation of latitudes and longitudes, to ensure we have timeseries at constant290

time resolution. We filter for hours between 6 PM and 9 AM where the person moves less than 50291

meters until the next hour; these stationary nighttime observations represent cases when the person292

is more likely to be at home. We filter for users who have stationary nighttime observations on293

at least 3 nights and with at least 60% of observations within a 50 meter radius. Finally, we infer294

home latitude and longitude as the median latitude and longitude of these nighttime home locations295

(after removing outliers outside the 50 meter radius). We choose the thresholds above because they296

yield a good compromise between inferring the home location of most users and inferring home297

locations with high confidence. Overall, we are able to infer home locations for 70% of users298

with more than 500 pings, and these locations are inferred with high confidence; 89% of stationary299

nighttime observations are within 50 meters of the inferred home latitude and longitude.300
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Inferring economic standing from home latitude and longitude301

Having inferred home location from nighttime GPS pings, we link their latitude and longitude to302

a large-scale housing database (Zillow) to infer the estimated rent of each user’s home, which we303

use as a measure of economic standing. We do this in two steps. First, we link the inferred user’s304

home latitude and longitude to the CoreLogic property database (Methods M1), a comprehensive305

database of properties in the United States, by taking the closest CoreLogic residential property306

(single family residence, condominium, duplex, or apartment) to the user’s inferred home latitude307

and longitude. Second, we use the CoreLogic address to query the Zillow database, which provides308

estimated home rent and price for each user. (The Zillow database does not allow for queries using309

raw latitude and longitude, which it is necessary to leverage to CoreLogic to obtain an address for310

each user.) We use Zillow’s estimated rent for the user’s home as our main measure of economic311

standing. We apply several quality control filters to ensure that the final set of users we use in312

our main analyses have reliably inferred home locations and economic standings: 1) we remove313

a small number of users whose inferred nighttime home latitude and longitude are identical to314

another user’s, since we empirically observe that these people have unusual ping patterns; 2) we315

remove users for whom we are lacking an Zillow rent estimate, since this constitutes our primary316

economic standing measure; 3) we winsorize Zillow rent estimates which are greater than $20,000317

to avoid spurious results from a small number of outliers; 4) we remove a small number of users318

who are missing Census demographic information for their inferred home location; 5) we remove319

users whose Zillow home location is further than 100 meters from their CoreLogic home location,320

or whose CoreLogic home location is further than 100 meters from their nighttime latitude and321

longitude; 6) we remove a small number of users in single family residences who are mapped to322

the exact same single family residence as more than 10 other people, since this may indicate a data323

error in the Zillow database.324

The set of users who pass these filters constitute our final analysis set of 9,567,559 users. We325

confirm that the Census demographic statistics of these users’ inferred home locations are similar326

to those of the US population in terms of income, age, sex, and race, suggesting that our inference327

procedure yields a demographically representative sample.328
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Any individual quantitative measure provides only a partial picture of a person’s economic329

standing. Recognizing this, we conduct robustness checks in which rather than using the Zillow330

estimated rent of the user’s home as a proxy for economic standing, we use 1) the median Census331

Block Group household income in that area; and 2) the percentile-scored rent of the home, to332

account for long-tailed rent distributions. Our main results are robust to using these alternate333

measures of economic standing (Supplementary Figure S3).334

Constructing interaction network335

We construct a fine-grained, dynamic interaction network G between all 9,567,559 individuals336

across 382 MSAs and 2829 counties, which is represented as an undirected graph G = (V , E)337

with time-varying edges. Each node vi ∈ V in the graph represents one of the N = 9, 567, 559338

individuals in our study, such that the set of nodes is V = {v1, v2, ..., vN}. Each node vi has a339

single attribute xi, representing the inferred economic standing (estimated rent) of the individual.340

Individuals vi and vj are connected by one edge ei,j,k ∈ E per interaction, with k indicating341

the kth interaction between individuals vi and vj . Each edge ei,j,k has three attributes ti,j,k, lati,j,k,342

loni,j,k indicating the timestamp, latitude, and longitude of the interaction respectively. We now343

focus our discussion on explaining how each of the interactions edges of the network is calculated.344

We define an interaction to occur when two users have GPS pings which are close (according345

to a fixed threshold) in both physical proximity and time. Specifically if user vi has a GPS ping346

with ti, lati, loni (indicating the timestamp, latitude, and longitude of the ping respectively), and347

user vj has a GPS ping with tj, latj, lonj , then we users are said to have shared an interaction if348

|ti − tj| < T and distance((lati, lati), (latj, latj)) < D, where T represents the time threshold349

(i.e. maximum time distance the two pings can be apart to count as an interaction) andD represents350

the distance threshold (i.e. maximum physical distance the two pings can be apart to count as an351

interaction). We filter for both distance and time simultaneously to ensure that our interaction352

network only includes pairs of users who are likely to have come into contact with each other. This353

contrasts to other methods which consider all individuals to visit the same location, irrespective of354

time26, to have an equal likelihood of interaction, an assumption which may prove unrealistic in355

20



many cities (e.g. demographics of individuals visiting public parks varies starkly by time of day55).356

We use a threshold T of 5 minutes, which is a stringent threshold on time as the mean number of357

pings per person per hour during day time is approximately one ping; we use a distance threshold358

D of 50 meters, following prior work which shows that even exposure to individuals from afar is359

linked to long term outcomes18. Our network is validated by correlation to external, gold-standard360

datasets (Extended Data Figure 1). Furthermore, we show through a series of robustness checks361

that our key results in Figure 1, Figure 2, and Figure 3 are highly robust to varying thresholds (i.e.362

1 minute or 2 minutes time threshold, as well as 10 meters or 25 meters distance threshold), as363

well as additional criteria to increase tie strength (i.e. requiring multiple consecutive interactions,364

or multiple interactions on unique days)—and under all observed circumstances the main findings365

remain consistent (see Supplementary Table S6, Supplementary Figures S2-S8).366

To efficiently calculate the interactions between all users, we implement our interaction367

threshold as a k-d tree57, a data structure which allows one to efficiently identify all pairs of points368

within a given distance of each other. In total, we identify 1,570,782,460 interactions. The times-369

tamp ti,j,k of the interaction is the minimum ping timestamp in the pair of individuals’ ping times-370

tamps (ti,tj), and the location lati,j,k, loni,j,k of the interaction is the average latitude and longitude371

of pair of pings belonging to the two individuals (lati,latj) and (loni,lonj).372

Annotating interactions373

Interactions are annotated to indicate whether they occurred at or near features of interest: e.g., near374

a user’s home. Annotations are not mutually exclusive in that an interaction may be simultaneously375

tagged as having occurred near multiple features from multiple data sources. We describe the376

specific annotations below.377

We annotate a user’s interaction as having occurred in their home if it occurs within 50378

meters of the user’s home location. An interaction is annotated with a TIGER road/railway if it379

occurs within 20 meters from that feature. An interaction is annotated as having occurred within380

a SafeGraph Places point-of-interest (POI) if the interaction occurs within the polygon defined for381

the POI. Polygons are provided by the SafeGraph Places database for both fine-grained POIs (e.g.382
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individual restaurants) as well as “parent” POIs (e.g. interaction hubs). We focus our analysis383

of fine-grained POIs (Figure 1e, Extended Data Figure 2) on the most visited fine-grained POIs:384

full-service restaurants, snack bars, limited-ervice restaurants (e.g. fast food), stadiums, etc (see385

Figure 1e for full list). These categories roughly align with those used by prior work 51.386

M3 Analysis387

Interaction Segregation388

We define the interaction segregation (IS) of a specified geographical area (i.e. Metropolitan Statis-389

tical Area, County) as the Pearson correlation between the economic standing (ES) of individuals390

residing in that geographical area, and the mean ES those that they come into contact with.391

Interaction Segregation = Corr(ES,ESinteractions)

Our metric captures the extent to which an individual’s ES predicts the ES of their immediate392

interaction network. Thus, in a perfectly integrated area in which individuals interact randomly393

with others regardless of ES, interaction segregation would equal 0.0. In a perfectly segregated394

area in which individuals interact with only those of the exact same ES, interaction segregation395

would equal 1.0.396

Interaction segregation nests a classic definition residential segregation, the Neighborhood397

Sorting Index7, 21 (NSI), which is equivalent to the Pearson correlation across between each per-398

son’s ES and the mean ES in their Census tract. The NSI is widely used because it can be calculated399

directly from Census data on the ES of people living in each tract. However, a fundamental limita-400

tion of NSI as a measure segregation is that the Census tract in which people live is a weak proxy401

for who they interact with. Census tracts are static and artificial boundaries which fail to capture402

interactions as individuals move throughout the cityscape during work, leisure time, and schooling.403

We design our interaction segregation (IS) metric such that it accommodates any interaction404
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network, and thus NSI is a special case of our metric. Specifically, if interaction segregation is405

computed for a synthetic interaction network under the unrealistic assumptions that a) people only406

interact with those in their home Census tract and b) they do so uniformly at random—then it is407

equivalent to NSI (Supplementary Figure S17). However, constructing such a synthetic interaction408

network from Census tracts has limited applicability to measuring segregation in the real world,409

because people may also interact with more heterogeneous populations as they visit other Census410

tracts for work, leisure, or other activities, a phenomenon we refer to as the visitor effect. Further-411

more, even within home tract, individuals may interact non-uniformly as they seek out people of412

similar economic standing; we refer to this as the homophily effect. Thus, we instead leverage dy-413

namic mobility data from cell phones to captures the extent of contact between diverse individuals414

throughout the day, and apply our metric, interaction segregation (IS), to this real-world interaction415

network. An advantage of interaction segregation is that it allows for direct comparability to NSI,416

because both measures are of the same underlying statistical quantity, but differ in their definition417

of the interaction network. Our results indicate that this choice of interaction network matters; IS418

is a stronger predictor of upward economic mobility (Extended Data Figure 1) as the two metrics419

are shown to be distinct (Supplementary Figure S18).420

To calculate the interaction segregation of a specified geographical area (i.e. Metropolitan421

Statistical Area, County), we first select the set of all individuals who reside in area: VA ⊂ V .422

For instance, to calculate Interaction Segregation for Napa, California (Figure 1c Top), VA is the423

3707 individuals with home locations inside the geographical boundary of the Napa, CA MSA.424

Subsequently, for each individual resident of the area vi ∈ VA we query the population interaction425

network (G = (V , E)) for the ES of the set of individuals they interact with, Yi: {xj ∈ V|ei,j,k ∈ E}.426

We then aim to estimate the Pearson correlation between the ES of each individual xi and the mean427

ES of those they interact with, yi = mean(Yi).428

Mixed model429

We use a linear mixed effects model to accurately estimate interaction segregation: the Pearson430

correlation coefficient between a person’s ES and the mean ES of the people they interact with. A431
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statistical model is required to estimate interaction segregation because naively computing the cor-432

relation based on limited data (in counties or MSAs with low population sizes) results in estimates433

that are downward biased. 1 By contrast, our linear mixed effects model is an unbiased estimator of434

the Pearson correlation. We compare the unbiased estimates from our linear mixed effects model435

to naive estimates of interaction segregation in Methods Figure 1. To illustrate why naive estimates436

of interaction segregation are downward biased, imagine that we compute the correlation between437

a person’s ES and the “true” mean ES of the people they interact with. Now, we add noise to the438

mean ES values, which represents the noisy mean estimates given limited data. As the noise is439

increased, the correlation is decreased. Thus, because estimates of each person’s mean ES will be440

more noisy in geographical areas with less data, there will be a downward bias to naive estimates441

of the Pearson correlation in these areas.442
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Methods Figure 1: Mixed model estimate compared with naive estimates of the Pearson correlation. We took people
who interacted with at least 500 other people and computed the Pearson correlation coefficient (the “gold standard
estimate”). Then, for each person we randomly sampled 5, 10, 50, 100, and 200 people from the 500+ people and
computed segregation estimates based on the reduced sets of people. The left plot shows the ratio of the estimates
to the gold standard, for each MSA. The right plot shows the overall number of people in the dataset with ≤ N
interactions.

Our mixed model models the distribution of datapoints (xi, yij) through the following equa-443

tion:444

1By “naive” estimation of the Pearson correlation, we intend to convey calculating the correlation using the sample:∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2
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yij = axi + b+ ε
(1)
i + ε

(2)
ij

where xi = ES of person i

yij = ES of person j who has interacted with person i

a, b = model parameters

ε
(1)
i = person-specific noise term

ε
(2)
ij = noise for each data point

The Pearson correlation coefficient between person i’s ES and the mean ES of the people445

they interact with is then computed as follows. We assume that xi has a variance of 1 through data446

preprocessing and that xi is uncorrelated with ε(1)i .447
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)
by fitting the mixed model using the R lme4 package, optimiz-448

ing the restricted maximum likelihood (REML) objective.449

Decomposing segregation by time450

Each interaction edge (ei,j,k) in our interaction network is timestamped with a time of interaction451

ti,j,k. This allows us to decompose our overall interaction segregation into fine-grained estimates452
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of segregation during different hours of the day, by filtering for interactions that occurred within453

a specific hour. In Supplementary Figures S19, we partition estimates of segregation by 3 hour454

windows to illustrate how segregation varies throughout the day (see Supplementary Information).455

Decomposing segregation by activity456

Each interaction edge (ei,j,k) in our interaction network occurs at a specific location lati,j,k, loni,j,k.457

Thus, it is possible to annotate interactions by the fine-grained POI (e.g. specific restaurant) they458

occurred in, as well as the by the higher-level “parent” POI (e.g. commercial center) in which the459

POI was located (Methods M2). This allows us to decompose our overall interaction segregation460

into fine-grained estimates of segregation by specific leisure activity. We do so by filtering the461

network for all interactions that occurred in a specific POI category, and re-calculating interaction462

segregation for the MSA or county, using only those interactions. In Figure 1e, we show the463

variation in interaction segregation by leisure site, and further explain these variations in Extended464

Data Figure 2.465

Bridging Index466

We seek to identify a modifiable, extrinsic aspect of a city’s built environment which may reduce467

interaction segregation. One promising candidate is the location of a city’s hubs of interaction. We468

define a new measure, the Bridging Index (BI), which measures the extent to which a particular set469

of interaction hubs (i.e. high-interaction POIs, P) facilitate the integration of individuals of diverse470

economic standing within a geographic area (i.e. MSA or county). Specifically, BI measures the471

economic diversity of the groups that would interact if everybody visited only their nearest hub472

from P—based on the observation that physical proximity significantly influences which hubs473

individuals visit35–37.474

We compute the Bridging Index (BI) via two steps (Extended Data Figure 6).475

1. Cluster all individuals who live in an area (i.e. MSA or county residents, VA) into K clusters476

(C1, C2, ..., CK) according to the interaction hub from P closest to their home location. K is477

the number of hubs in P .478

2. Bridging Index is computed as the weighted average of the economic diversity (i.e. Gini479
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Index) of these clusters of people, relative to the area’s overall economic diversity.480

Bridging Index (BI) =
Within Hub Economic Diversity

Overall Economic Diversity
=

∑K
i=1 |Ci| ·Gini Index(Ci)
|VA| ·Gini Index(VA)

We illustrate the intuition for BI and how it captures the relationship between home and hub481

locations in Extended Data Figure 7. A BI of 1.0 indicates that if everybody visits their nearest482

interaction hub, each person will be exposed to a set of people as economically diverse as the483

overall city they reside in. Thus, a BI of 1.0 signifies perfect bridging, i.e. even if individuals live484

in segregated neighborhoods, hubs are located such that individuals must leave their neighborhoods485

and interact with diverse others. On the other hand, a BI of 0.0 signifies the opposite extreme; a486

city with a BI of 0.0 is one in which, if everybody visits the nearest interaction hub, each person487

will be exposed to only people of the exact same economic standing.488

The economic diversity of each cluster Ci is quantified using the Gini Index: GiniIndex(Ci),489

a well-established measure of economic statistical dispersion (Extended Data Figure 6c)63, al-490

though results are robust to choice of economic diversity measure such as using variance instead491

of Gini Index (Supplementary Figure S12). The denominator of BI normalizes for the baseline492

economic diversity observed in the city, allowing for direct comparisons between cities.493

In our primary analysis, we identify hubs of interaction via commercial centers (e.g. shop-494

ping malls, plazas, etc. which are higher-level clusters of individual POIs) because they are associ-495

ated with a high density of interactions. Specifically, the majority (56.9%) of interactions happen496

inside of or within 1km of a commercial center (e.g. shopping mall, plaza, etc.) even though only497

2.5% of the land area of MSAs is within 1km of a commercial center. We thus compute BI using498

the set P of all commercial centers within each MSA. We discover that BI strongly predicts inter-499

action segregation (Spearman Correlation −0.78, Figure 3d). The top 10 MSAs with the highest500

BI are 53.1% less segregated than the 10 MSAs with the lowest BI. BI predicts segregation more501

accurately than population size, racial demographics ES inequality, NSI, and racial demographics,502
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and is significantly associated with segregation (p<10−8) after controlling for all aforementioned503

variables (Extended Data Tables 2-3).504

Hypothesis Testing and Confidence Intervals505

Unless otherwise noted, confidence intervals and hypothesis tests were conducted using a bootstrap506

with 10,000 replications64. Steiger’s Z-test was used to compare different predictors of segregation507

indices, and hypothesis tests for Spearman correlation coefficients were computed using two-sided508

Student’s t-tests65–67.509
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Extended Data510

Dependent variable: Interaction Segregation

(1) (2) (3) (4) (5) (6)

Intercept 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)
Log(Population Size) 0.059∗∗∗ 0.041∗∗∗ 0.044∗∗∗ 0.026∗∗∗ 0.028∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)
Gini Index (Estimated Rent) 0.064∗∗∗ 0.050∗∗∗ 0.051∗∗∗ 0.045∗∗∗ 0.047∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.003)
Political Alignment (% Democrat in 2016 Election) 0.004 0.004

(0.004) (0.004)
Racial Demographics (% non-Hispanic White) 0.001 0.006∗

(0.004) (0.003)
Mean ES (Estimated Rent) -0.012∗∗∗ -0.005

(0.004) (0.004)
Walkability (Walkscore) 0.002 0.001

(0.003) (0.003)
Commutability (% Commute to Work) -0.011∗∗∗ -0.010∗∗∗

(0.003) (0.004)
Conventional Segregation (NSI) 0.042∗∗∗ 0.041∗∗∗

(0.003) (0.003)

Observations 382 382 382 376 382 376
R2 0.350 0.419 0.567 0.578 0.704 0.705
Adjusted R2 0.348 0.417 0.565 0.573 0.701 0.698

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Extended Data Table 1: Population size is significantly associated with interaction segregation, after controlling
for MSA income inequality (Gini Index), political alignment (% Democrat in 2016 election), racial demograph-
ics (% non-Hispanic White), mean ES, walkability (Walkscore76), commutability (% of residents commuting
to work), and residential segregation (NSI). Here we show the coefficients (after normalizing via z-scoring to have
mean 0 and variance 1) from the primary specifications estimating the effect of population size on interaction segre-
gation across all MSAs. Columns (1-5) are models specified with different subsets of covariates; Column 6 shows
model specification with all covariates. Differences between sample size in models is due to missing data for several
covariates in a small number of MSAs (Walkscores were not available for all MSAs). (*p < 0.1; **p < 0.05; *** p <
0.01).
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Extended Data Figure 1: This studies’ interaction network predicts population-scale friendship formation and
upward economic mobility outcomes. We measure the external validity of our definition of interaction, by linking our
interaction network to outcomes across two gold-standard, large-scale, datasets. We find at the zip code, county, and
MSA-level, our interaction network mirrors population-scale outcomes resulting from dynamic human processes: (a-
b) the Facebook Social Connectedness Index68 measures the relative probability of a Facebook friendship link between
a given Facebook user in location i and a given user in location j. FB Social Connectedness Index has been used social
segregation69, and has also been linked to economic70, 71 and public health outcomes72. We reproduce the Social
Connectness Index using our interaction network ( #InteractionPairsi,j

#Individualsi·#Individualsj
) at the county (a) and zip code (b) level,

and find strong correlations across county pairs (Spearman Correlation 0.85, N = 121, 595, p < 10−4) and zip code
pairs (Spearman Correlation 0.73, N = 1, 053, 539, p < 10−4). (c-d) The Chetty et al. Intergenerational Mobility
dataset quantifies upward economic mobility from federal income tax records for each MSA as the mean income rank
of children with parents in the bottom half of the income distribution 73. We find that interaction segregation at the
MSA-level (c) correlates to (absolute) upward economic mobility (Spearman Correlation -0.37, N = 379, p < 10−4),
and does so significantly more strongly (p < 10−4) than (d) the conventional segregation measure NSI (Spearman
Correlation -0.12, N = 379, p < 0.05)

.
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   (a)                                        (c)               

(c)   

Spearman Corr. -0.75
Spearman Corr. 0.69

Extended Data Figure 2: Understanding why interaction segregation varies significantly across leisure sites. We
identify three primary facets of socioeconomic differentiation between POIs which explain the heterogeneous segre-
gation levels of different leisure POIS (Figure 1e): (a) localization, (b) quantity, and (c) stratification. (a) Localization
strongly predicts segregation across all POI categories (Spearman Correlation -0.75, N=17, p<0.001). POIs which
are more locally embedded into neighborhoods (e.g. religious organizations) are more segregated than activities in
which POIs are serve multiple neighborhoods (e.g. stadiums). We operationalize localization as the average distance
from each indvidual in the MSA to the nearest POI of that category. (a) The quantity of POIs also explains segregation
(Spearman Correlation 0.69, N=17, p<0.01). Leisure activities with more options (e.g. restaurants) have differentiated
venues catering to a specific economic standing (e.g. Michelin-star restaurants) compared to POIs which are small in
number and cater to the overall city (e.g. stadiums) (c) Golf courses and country clubs (golf clubs) are an anomaly in
that they have a small number of unlocalized POIs, but are highly segregated. We conduct a case study in which look
at top and bottom golf clubs by mean visitor ES in 5 of the 10 largest MSAs. We find that the high segregation of golf
clubs is due to extreme stratification between venues; for instance the minimum cost to play at the high-ES golf course
in Miami, FL is 11717× higher than at the lowest-ES golf course. By contrast, the average cost of a MacDonalds
Big Mac ($5.6574) is only 63× higher than the average cost of a Michelin 3-star restaurant ($35775). Finally, these
findings foreshadow Bridging Index (BI), which captures POI localization, quantity, and stratification (Extended Data
Figure 7).
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(a)                                                     (b)      

Spearman Corr. 0.45 Spearman Corr. 0.45

Extended Data Figure 3: Large, dense counties are more segregated. We compute interaction segregation across
2829 USA counties (94% of the counties in the USA), excluding counties in which there are less than 50 individuals
in our dataset. We find that at the county-level, interaction segregation is also positively correlated with population
size (Spearman Correlation 0.45, N=2829, p< 10−4) and population density (Spearman Correlation 0.45, N=2829,
p< 10−4). These correlations reveal that the association between large, dense cities and interaction segregation (Figure
2a) is not an artifact of city boundaries, and may in fact be an emergent property from dynamics of individuals residing
highly populated, dense geographic areas, which persists across multiple scales of granularity.
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Dependent variable: Interaction Segregation

(1) (2) (3) (4) (5)

Intercept 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
Bridging Index -0.078∗∗∗ -0.059∗∗∗ -0.058∗∗∗ -0.035∗∗∗ -0.036∗∗∗

(0.003) (0.005) (0.005) (0.006) (0.006)
Log(Population Size) 0.003 0.008∗ 0.010∗∗ 0.017∗∗∗

(0.004) (0.005) (0.004) (0.006)
Gini Index (Estimated Rent) 0.031∗∗∗ 0.032∗∗∗ 0.035∗∗∗ 0.036∗∗∗

(0.003) (0.003) (0.003) (0.003)
Political Alignment (% Democrat in 2016 Election) 0.001 0.002

(0.004) (0.004)
Racial Demographics (% non-Hispanic White) 0.003 0.005

(0.003) (0.003)
Mean ES (Estimated Rent) -0.009∗∗ -0.005

(0.004) (0.003)
Walkability (Walkscore) 0.002 0.001

(0.003) (0.003)
Commutability (% Commute to Work) -0.011∗∗∗ -0.009∗∗

(0.003) (0.004)
Conventional Segregation (NSI) 0.028∗∗∗ 0.026∗∗∗

(0.004) (0.004)
# of Interaction Hubs -0.006

(0.005)

Observations 382 382 376 382 376
R2 0.620 0.686 0.693 0.733 0.736
Adjusted R2 0.619 0.684 0.688 0.729 0.729

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Extended Data Table 2: Bridging Index (BI) is significantly associated with interaction segregation, after con-
trolling for population size, # of hubs, MSA income inequality (Gini Index), political alignment (% Democrat
in 2016 election), racial demographics (% non-Hispanic White), mean ES, walkability (Walkscore76), com-
mutability (% of residents commuting to work), and residential segregation (NSI). Here we show the coefficients
(after normalizing via z-scoring to have mean 0 and variance 1) from the primary specifications estimating the effect of
population size on interaction segregation across all MSAs. Columns (1-4) are models specified with different subsets
of covariates; Column 5 shows model specification with all covariates. Differences between sample size in models is
due to missing data for several covariates in a small number of MSAs (Walkscores were not available for all MSAs).
(*p < 0.1; **p < 0.05; *** p < 0.01).

Measure Spearman ρ2 Pearson R2

Bridging Index 0.60 0.62
Log(Population Size) 0.39 0.35
Gini Index (Estimated Rent) 0.41 0.42
Political Alignment (% Democrat in 2016 Election) 0.06 0.05
Racial Demographics (% non-Hispanic White) 0.09 0.05
Mean ES (Estimated Rent) 0.09 0.05
Walkability (Walkscore) 0.01 0.02
Commutability (% Commute to Work) 0.04 0.03
Conventional Segregation (NSI) 0.44 0.42
# of Interaction Hubs 0.44 0.16

Extended Data Table 3: Bridging Index (BI) strongly predicts interaction segregation and does so more accurately
(p<10−4, Steiger’s Z-test) than population size, # of hubs, MSA income inequality (Gini Index), political alignment
(% Democrat in 2016 election), racial demographics (% non-Hispanic White), mean ES, walkability (Walkscore76),
commutability (% of residents commuting to work), and residential segregation (NSI)

.
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(a)                         (b)                            (c)

Extended Data Figure 4: At higher levels of scale, spaces in large cities are more differentiated and consequently
segregated: interaction hubs. (a-c) Conducting an analogous analysis to that for restaurants in Figure 3c-e for
interaction hubs (i.e. commercial centers which are higher-level clusters of restaurants, grocery stores, etc.). We
find that higher segregation is driven by an increase in highly differentiated choice of interaction hubs in large cities:
(a) Larger MSAs have more interaction hubs, giving residents more options to self-segregate (Spearman Correlation
0.81, N=382, p< 10−4). (b) Consequently, hubs in larger MSAs vary more in terms of the mean ES of their visitors
(Spearman Correlation 0.58, N=382, p< 10−4) and as a result, (c) interaction segregation within hubs is higher in
larger MSAs (Spearman Correlation 0.64, N=382, p< 10−4). Overall, this analysis suggests that across multiple
levels of scale, large cities offer a greater choice of differentiated spaces targeted to specific socioeconomic groups,
promoting everyday segregation in interactions.
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Extended Data Figure 5: At higher levels of scale, spaces in large cities are more differentiated and consequently
segregated: home neighborhoods. (a-c) Conducting an analogous analysis to that for restaurants in Figure 3c-e, we
find that higher segregation is driven by an increase in highly differentiated choice of neighborhoods in large cities:
(a) Larger MSAs have more census tracts, giving residents more options to self-segregate (Spearman Correlation
0.97, N=382, p< 10−4). (b) Consequently, census tracts in larger MSAs vary more in terms of the mean ES of their
residents (Spearman Correlation 0.58, N=382, p< 10−4) and as a result, (c) both conventional NSI and interaction
segregation are higher (Spearman Correlations 0.52 and 0.35, N=382, p< 10−4 and p< 10−4). However, (c) also
shows that interaction segregation (green series) rises more slowly with population than conventional segregation (blue
series), suggesting that within-home-tract homophily, which increases interaction segregation but not conventional
segregation, is not more pronounced in large MSAs. Substantiating this, (d) shows that when home tract interaction
segregation is computed using an alternate ES measure so it captures only within-home-tract-homophily, it is no higher
in large MSAs (Spearman Correlation -0.01, N=382, p> 0.1). (The alternative ES measure is computed by subtracting
the mean ES in each Census tract; see Methods.) Overall, this analysis suggests that the higher home tract segregation
in large MSAs is driven by people’s greater choice of neighborhoods of varying ES in which to live, but not by a
greater tendency to interact homophilously within their own neighborhood.
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(a)                     (c)

(1) CLUSTER HOMES BY NEAREST INTERACTION HUB (2) COMPUTE ECONOMIC DIVERSITY FOR EACH CLUSTER
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Low                                            High
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Low                                                   High Interaction
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(b)                     

Extended Data Figure 6: Computing Bridging Index (BI). Illustration of our analytical pipeline for calculating BI.
(a) BI is computed from the locations and number of POIs in the MSA which are expected to be hubs of interaction,
as well the locations and economic standing values of all homes within MSA boundaries. We intentionally develop
BI without using mobility data, with the intention of identifying a modifiable extrinsic aspect of an MSA that can be
intervened on to impact mobility patterns and decrease interaction segregation (b) In order, we (1) cluster all homes by
nearest interaction hub (using straight line distance from home to hub), partitioning all homes into K clusters, where
K is the number of hubs in the MSA (2) compute the weighted average economic diversity (i.e. Gini Index) of the
clusters, normalized by the overall economic diversity of the MSA to allow for comparisons between different MSAs
of varying baseline levels of economic diversity (Extended Data Table 1) (c) The graphical definition of Gini Index
is provided, which is a standard measure of economic dispersion63. Results are robust to the definition of economic
diversity, and holds true when using variance in ES instead of Gini Index (Supplementary Figure S12).
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Extended Data Figure 7: Understanding the determinants of BI. The Bridging Index (BI) is a single metric which
captures three important factors of built environment (see Supplementary Figure S11 for contributions of these factors
to explaining interaction segregation):
(1) The locations of interaction hubs — If hubs are located in between diverse neighborhoods, BI will be high as hubs
will bridge together diverse individuals.
(2) The # of interaction hubs — as # of hubs decreases, BI increases (e.g if there is only 1 hub in a city, BI will be 1.0
as all individuals are unified by a single hub)
(3) Residential segregation, i.e. the locations of homes and their associated economic standing — as residential
segregation decreases we can expect that individuals residing near each hub will be more diverse.
This figure builds intuition for BI by showing how BI may vary for a single simulated city, consisting of highly
segregated neighborhoods. We hold residential segregation (3) constant, and vary the location (1) and number (2) of
interaction hubs across panels (a), (b), (c), (d), in order of increasing BI. Note that BI in (c) is substantially higher
than BI in (b), because hubs in (c) are better positioned to bridge diverse neighborhoods—even though the number of
hubs remains constant.
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Extended Data Figure 8: Montgomery, AL. We conduct an analogous analysis to Figure 3a,b but for Montgomery,
AL, which has nearly identical population (374K vs 385K residents) and income inequality (55th vs 60th percentile
Gini Index) to Fayetteville, NC but is 74% more segregated (88th percentile vs. 21st percentile interaction segregation).
We find that the difference in segregation is explained by Montgomery, AL having a significantly higher BI compared
to Fayetteville, NC (65th vs. 13th percentile). In Montgomery, AL interaction hubs (i.e. commercial centers) are
differentiated by ES which results in high-ES individuals and low-ES individuals visiting separate hubs and prevents
them from engaging in cross-ES interactions. (a) shows that, as with all MSAs, commercial centers (e.g. shopping
malls, plazas, etc.) are hubs of interaction. We illustrate that in Montgomery, AL all visually discernible hubs are
associated with one or more commercial centers. (b) In Montgomery, AL, interaction hubs are located in different
locations which cater separate to high and low ES residents, leading to segregated interactions. As an illustrative
example, we show a zoomed-in map of one hub (Chantilly Center) in Montgomery, AL, and display a random sample
of 10 interactions occurring inside of it. Chantilly Center in Montgomery, AL is located accessibly for high ES
individuals but is far apart from low-ES tracts. As a result, the sample shows that the majority of interactions are
middle-upper ES, and only a few low-ES individuals visit Chantilly Center and interact with these high-ES individuals.
Home icons demarcate individual home location (up to 100 meters of random noise added to preserve anonymity);
home colors denote individual ES; arcs indicate an interaction inside of the hub; background colors indicate mean
census tract ES.
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Supplementary Information511

Accurate pings Unique days Distinct user pairs
interact Interactions Accurate pings Distinct user pairs

who interact Interactions

count 8,609,406 8,609,406 8,527,115 8,527,115 382 382 382
mean 3,273 35 184 363 73,757,695 2,577,322 4,845,144

std 16,507 20 374 1,073 163,848,305 8,872,464 16,838,938
min 11 2 1 1 2,196,084 27,326 53,350

10% 570 13 8 17 8,398,875 140,251 313,803
50% 1,471 30 76 141 22,054,930 504,525 1,031,691
90% 5,857 63 436 785 175,295,175 4,573,152 8,954,800
max 4,755,081 95 42,323 193,193 1,605,070,032 94,140,015 215,183,409

Supplementary Table S1: Combined descriptive statistics for all individuals residing in 382 Metropolitan Statistical
Areas (MSAs). 8,609,406 individuals reside in a Metropolitan Statistical Area (90% of the overall 9,567,559 individ-
uals in our study). The remaining 958,153 users live outside of MSAs, influencing the interaction segregation of an
MSA by coming into contact with MSA residents. Descriptive statistics are grouped by individual (left) and MSA
(right). At least one of two users in each interaction pair must live in an MSA to be included in this table.

Median # of Interactions Per User                   Median # of Interactions Per User

Supplementary Figure S1: Descriptive statistics of path crossings.
(a) Ten Metropolitan Statistical Areas (MSAs) with the highest and lowest median users crossed per user.
(b) Overall distribution of median users crossed per user over MSAs.
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display name # POIs (25%) # POIs (50%) # POIs (75%) # POIs (max) # POIs (mean) # POIs (min) # POIs (std)

Full-Service Restaurants 75.5 160.0 424.0 24,689.0 609.8 12.0 1,820.05
Snack Bars 18.0 40.0 110.0 6,266.0 169.76 1.0 511.17
Limited-Service Restaurants 33.0 60.0 145.5 4,847.0 192.14 5.0 434.78
Stadiums 1.0 2.0 4.0 43.0 3.67 1.0 4.32
Performing Arts Centers 1.0 2.0 4.0 28.0 3.25 1.0 3.41
Fitness/Recreation Centers 10.0 25.0 72.0 4,877.0 126.6 1.0 414.26
Historical Sites 1.0 2.0 7.0 206.0 9.16 1.0 21.65
Theme Parks 1.0 3.0 6.0 158.0 7.64 1.0 16.77
Bars/Drinking Places 2.0 5.0 13.0 447.0 19.52 1.0 45.91
Parks 3.0 6.0 17.0 793.0 28.69 1.0 80.44
Religious Organizations 7.0 16.0 41.25 2,644.0 63.28 1.0 196.97
Bowling Centers 2.0 4.0 8.0 204.0 9.77 1.0 20.52
Museums 1.0 3.0 6.0 137.0 6.78 1.0 13.99
Casinos 1.0 3.0 7.0 188.0 8.05 1.0 17.22
Independent Artists 1.0 2.0 5.0 130.0 7.55 1.0 17.42
Other Amusement/Recreation 1.0 2.0 7.0 525.0 10.17 1.0 36.13
Golf Courses and Country Clubs 2.0 3.0 7.0 101.0 8.07 1.0 13.77

Supplementary Table S2: POI descriptive statistics (# of POIs in each MSA) for each of the fine-grained POI
categories in Figure 1e.

display name POI ES (25%) POI ES (50%) POI ES (75%) POI ES (max) POI ES (mean) POI ES (min) POI ES (std)

Full-Service Restaurants 1,210.96 1,395.0 1,674.27 3,628.06 1,493.04 763.0 430.99
Snack Bars 1,229.73 1,412.35 1,684.69 3,621.34 1,513.61 788.12 433.86
Limited-Service Restaurants 1,174.84 1,351.64 1,587.4 3,501.19 1,440.15 771.34 410.95
Stadiums 1,310.0 1,500.0 1,775.0 3,585.25 1,593.21 795.0 424.77
Performing Arts Centers 1,395.0 1,583.1 1,832.4 3,632.78 1,659.56 875.0 431.06
Fitness/Recreation Centers 1,230.03 1,431.79 1,703.94 3,749.05 1,528.73 700.0 453.4
Historical Sites 1,325.0 1,527.94 1,793.75 3,618.58 1,627.62 757.5 452.96
Theme Parks 1,300.0 1,498.75 1,750.0 3,900.0 1,612.58 700.0 501.79
Bars/Drinking Places 1,220.02 1,420.25 1,676.4 3,656.17 1,505.86 750.0 440.08
Parks 1,279.82 1,470.15 1,748.12 3,748.11 1,562.62 725.0 454.13
Religious Organizations 1,269.27 1,459.86 1,677.08 3,670.38 1,529.02 754.0 428.42
Bowling Centers 1,180.08 1,368.75 1,621.15 3,504.36 1,457.96 725.0 434.56
Museums 1,275.0 1,490.83 1,775.36 3,606.66 1,585.92 800.0 474.37
Casinos 1,200.0 1,400.0 1,655.54 3,606.17 1,503.88 725.0 469.68
Independent Artists 1,374.38 1,611.5 1,904.6 3,691.68 1,725.42 850.0 528.33
Other Amusement/Recreation 1,266.0 1,450.0 1,700.74 4,053.39 1,549.13 758.0 462.03
Golf Courses and Country Clubs 1,399.06 1,648.4 1,964.19 4,248.5 1,765.92 900.0 542.13

Supplementary Table S3: POI descriptive statistics (average POI economic standing in an MSA) for each of the
fine-grained POI categories in Figure 1e. POI economic standing is operationalized as the median visitor ES of the
POI.
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display name IS (25%) IS (50%) IS (75%) IS (max) IS (mean) IS (min) IS (std)

Full-Service Restaurants 0.22 0.27 0.32 0.48 0.27 0.08 0.07
Snack Bars 0.2 0.25 0.31 0.5 0.25 0.01 0.08
Limited-Service Restaurants 0.24 0.29 0.34 0.47 0.29 0.04 0.08
Stadiums 0.14 0.17 0.22 0.36 0.18 0.02 0.06
Performing Arts Centers 0.14 0.16 0.19 0.27 0.17 0.05 0.05
Fitness/Recreation Centers 0.2 0.26 0.31 0.47 0.25 0.03 0.08
Historical Sites 0.15 0.2 0.27 0.43 0.21 0.0 0.09
Theme Parks 0.16 0.2 0.25 0.42 0.2 0.02 0.08
Bars/Drinking Places 0.18 0.23 0.3 0.42 0.23 0.06 0.08
Parks 0.19 0.26 0.33 0.47 0.26 0.05 0.09
Religious Organizations 0.24 0.32 0.38 0.55 0.31 0.05 0.1
Bowling Centers 0.16 0.21 0.26 0.44 0.22 0.03 0.08
Museums 0.18 0.22 0.28 0.45 0.24 0.06 0.08
Casinos 0.2 0.26 0.32 0.47 0.26 0.02 0.09
Independent Artists 0.13 0.2 0.27 0.39 0.21 0.02 0.09
Other Amusement/Recreation 0.18 0.25 0.31 0.71 0.25 0.02 0.12
Golf Courses and Country Clubs 0.33 0.41 0.5 0.62 0.4 0.2 0.11

Supplementary Table S4: POI descriptive statistics (Interaction Segregation within-category) for each of the fine-
grained POI categories in Figure 1e. Interaction Segregation is calculated for each POI category by filtering for only
interactions which occurred inside of the POI category, before estimating interaction segregation (Methods).

display name # Interactions (25%) # Interactions (50%) # Interactions (75%) # Interactions (max) # Interactions (mean) # Interactions (min) # Interactions (std)

Full-Service Restaurants 23,060.75 54,219.5 156,645.0 19,540,673.0 398,304.04 6,112.0 1,634,147.68
Snack Bars 15,582.0 38,954.0 120,225.0 14,128,466.0 291,523.01 5,233.0 1,205,873.07
Limited-Service Restaurants 16,485.5 38,444.0 106,515.0 10,453,353.0 227,378.5 4,122.0 878,243.0
Stadiums 53,077.5 96,487.5 336,479.75 8,942,618.0 348,920.85 17,024.0 988,719.72
Performing Arts Centers 66,712.0 120,256.0 384,770.0 6,972,326.0 403,378.22 27,589.0 932,589.88
Fitness/Recreation Centers 11,165.25 21,541.5 62,380.5 5,630,299.0 158,025.53 3,740.0 573,788.93
Historical Sites 18,351.5 47,793.0 98,385.5 6,362,665.0 187,978.09 5,147.0 684,470.65
Theme Parks 34,989.0 61,553.0 135,744.0 1,883,136.0 157,622.73 14,460.0 290,329.93
Bars/Drinking Places 11,592.5 21,401.0 63,929.0 1,266,235.0 84,752.14 4,553.0 181,978.58
Parks 10,050.75 22,301.0 61,492.75 1,520,092.0 88,789.84 5,383.0 193,888.94
Religious Organizations 6,014.0 13,002.0 35,157.25 2,206,316.0 60,683.34 2,739.0 212,948.46
Bowling Centers 16,423.5 26,517.0 65,563.5 1,030,970.0 92,515.06 5,874.0 174,876.21
Museums 14,807.5 27,802.0 66,729.75 681,994.0 87,797.02 4,310.0 146,495.57
Casinos 13,844.0 23,109.0 60,222.0 826,676.0 68,012.52 7,474.0 124,063.14
Independent Artists 8,795.0 23,789.5 56,736.75 1,106,402.0 87,662.95 3,951.0 198,394.53
Other Amusement/Recreation 6,923.0 14,349.0 42,793.0 365,436.0 38,640.52 2,929.0 56,964.16
Golf Courses and Country Clubs 4,765.75 7,836.5 15,555.0 58,348.0 13,047.42 2,636.0 13,348.76

Supplementary Table S5: POI descriptive statistics (number of interactions occurring inside POI category) for each
of the fine-grained POI categories in Figure 1e.
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Pearson Corr. w/ Primary Spearman Corr. w/ Primary Median Mean
Interaction Segregation Measure

Primary Measure — — 0.35 0.35
Primary Measure (+ Up-weight Multiple Interactions) 0.89 0.91 0.46 0.45

ES Definition: Rent Zestimate Percentile 0.78 0.80 0.46 0.45
ES Definition: Within-MSA Rent Zestimate Percentile 0.81 0.83 0.54 0.53
ES Definition: Census Median Household Income 0.75 0.77 0.47 0.46

Exclude Pri/Sec Roads 0.99 0.99 0.37 0.37
Exclude Roads 0.98 0.98 0.37 0.37
Exclude Same-home interactions 0.98 0.98 0.34 0.34
Work/Leisure (Neither in Home Tract) 0.93 0.93 0.31 0.31
Leisure (inside POI) 0.85 0.84 0.28 0.29

Minimum Distance Between Pings: < 25 meters 0.98 0.99 0.36 0.36
Minimum Distance Between Pings: < 10 meters 0.95 0.96 0.37 0.36

Minimum Time Between Pings: < 2 minutes 0.99 0.99 0.36 0.36
Minimum Time Between Pings: < 60 seconds 0.99 0.99 0.36 0.36

Minimum Tie Strength: 2 consecutive interactions 0.94 0.95 0.35 0.35
Minimum Tie Strength: 3 consecutive interactions 0.83 0.83 0.37 0.37
Minimum Tie Strength: 2 unique days of interaction 0.88 0.90 0.47 0.46
Minimum Tie Strength: 3 unique days of interaction 0.73 0.76 0.56 0.54

Dist. < 25 meters, Time < 2 min., >= 2 consec. interactions 0.93 0.94 0.35 0.35
Dist. < 25 meters, Time < 2 min., >= 2 unique days 0.88 0.89 0.46 0.45
Dist. < 10 meters, Time < 60 sec., >= 3 consec. interactions 0.80 0.80 0.38 0.37
Dist. < 10 meters, Time < 60 sec., >= 3 unique days 0.73 0.75 0.52 0.50

Supplementary Table S6: Robustness checks overview. We find that our definition of interaction segregation is
robust to varying many parameters: weighting of repeated interactions between the same users, definition of
economic standing, inclusion/exclusion of roads and same-home interactions, filtering location of interaction,
minimum distance, minimum time, and minimum tie strength (as well as the intersection of distance, time,
and tie strength). The above variants all are strongly correlated to our primary measure (all have Spearman Corr.
>= 0.75). We also find that our primary findings that (1) large, dense cities facilitate segregation and (2) interaction
hub locations accessible to diverse individuals may mitigate segregation are robust across all definitions of Interaction
Segregation (Supplementary Figures S2-S7). Note that we exclude same-home interactions in robustness checks that
vary minimum time, distance, or require repeated interactions, to ensure that results are not influenced by interactions
with members of the same household (these interactions ordinarily have minimum influence on Interaction Segrega-
tion, as shown by the robustness check which excludes same-home interactions and results in virtually identical metric
(Spearman Corr. 0.98); however, the influence of same-home interactions is higher after more conservative filters are
applied to the definition of interactions, such as requiring a minimum tie strength of 3 consecutive interaction).
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Supplementary Figure S2: Robustness of primary study findings to weighting of repeated interactions. We
find that our primary study findings that, (1) large, dense cities facilitate segregation and (2) interaction hub locations
accessible to diverse individuals may mitigate segregation, are robust to the choice of whether to upweight repeated
interactions in our interaction network. We compare the results of:
Primary Measure: Interactions are defined as pairs of users who have ever interacted within the study observation
window (three months of 2017). We deduplicate repeated interactions, as frequency of pings varies across smartphone
users, to reduce bias from users with a higher frequency of pings. For instance, if an individual A with an individual B
(ES $1000) two times and individual C (ES $2000) one, we compute the mean ES of individual A’s network as $1500.
Upweight Repeated Interactions: Repeated interactions are unweighted when calculating the mean ES of an individ-
ual’s interaction network. For instance, if an individual A with an individual B (ES $1000) two times and individual
C (ES $2000) once, we compute the mean ES of individual A’s network as $1333.
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Supplementary Figure S3: Robustness of primary study findings to definition of economic standing. We find that
our primary study findings that, (1) large, dense cities facilitate segregation and (2) interaction hub locations accessible
to diverse individuals may mitigate segregation, are robust to the definition of economic standing. We compare the
results of:
Primary Measure: Our primary measure leverages estimated monthly rent value (Zillow Rent Zestimate).
Census Block Group (CBG) Median Household Income: We define the ES of an individual is the median household
income in the CBG in which they reside.
Rent Zestimate Percentile: We normalize Rent Zestimate values across all individuals.
Primary measure Relative to MSA: We normalize Rent Zestimate values across all individuals within an MSA, inde-
pendent of other MSAs, to account for differences in cost of living across cities.
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Supplementary Figure S4: Robustness of primary study findings to exclusion of interactions within roads, ex-
clusion interactions with residents of the same home, and exclusion of non-work/leisure interactions. We find
that our primary study findings that, (1) large, dense cities facilitate segregation and (2) interaction hub locations ac-
cessible to diverse individuals may mitigate segregation, are robust to filtering for a subset of interactions. We compare
the results of:
Primary Measure: Our primary measure includes all interactions, aiming to give a complete account of an individual’s
interaction network including path crossings on roads as well as those they share a home with.
Excluding roads: We define the ES of an individual is the median household income in the CBG in which they reside.
Rent Zestimate Percentile: We normalize Rent Zestimate values across all individuals.
Primary measure Relative to MSA: We normalize Rent Zestimate values across all individuals within an MSA, inde-
pendent of other MSAs, to account for differences in cost of living across cities.
Work/Leisure: We filter to include only interactions likely to take place in the context of work or leisure, by excluding
interactions which occurred when either individuals were located within their home tracts.
Leisure: We filter for leisure interactions by including only interactions ocurring inside of the POIs categorized as
related to leisure (Figure 1e).
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Supplementary Figure S5: Robustness of primary study findings to minimum distance required between two
GPS pings for individuals to be considered interacting. We find that our primary study findings that, (1) large, dense
cities facilitate segregation and (2) interaction hub locations accessible to diverse individuals may mitigate segregation,
are robust to the time threshold used in our definition of interaction:
Primary Measure: Our primary measure uses a threshold of 50 meters, based on prior literature which shows that even
distant exposure to diverse individuals is predictive of long-term behaviors18.
Alternative measures: We alternatively consider more conservative thresholds of 25 meters and 10 meters, with 10
meters being the lowest threshold due to limitations of GPS ping accuracy77, 78.
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Supplementary Figure S6: Robustness of primary study findings to minimum time elapsed between two pings
to constitute an interaction. We find that our primary study findings that, (1) large, dense cities facilitate segregation
and (2) interaction hub locations accessible to diverse individuals may mitigate segregation, are robust to the time
threshold used in our definition of interaction:
Primary Measure: Our primary measure uses a threshold of 5 minutes, to be inclusive of users with sparse pings (e.g.,
for a subset of users, we only have 1 ping per day, while for others we have 100+ pings per day) while maintaining a
reasonable confidence that an interaction may have occurred.
Alternative measures: We alternatively consider more conservative thresholds of 2 minutes and 1 minute.
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Supplementary Figure S7: Robustness of primary study findings to minimum tie strength required to consti-
tute an interaction. We find that our primary study findings that, (1) large, dense cities facilitate segregation and
(2) interaction hub locations accessible to diverse individuals may mitigate segregation, are robust regardless of the
minimum tie strength threshold between two individuals to be constitute an interaction:
Primary Measure: Our primary measure only requires a single pair of pings between users to constitute an interaction,
to be inclusive of users with sparse pings (e.g., for a subset of users, we only have 1 ping per day, while for others we
have 100+ pings per day).
Alternative measures: We alternatively consider more conservative thresholds of 2 or 3 consecutive interactions, as
well as 2 or 3 interactions across unique days. Requiring consecutive interactions increases the likelihood that individ-
uals actually came into contact together; interactions across unique days increases the likelihood that interactions are
not merely path crossings, but social interactions between individuals who are familiar with each other. (continued
on next page)

51



Supplementary Figure S8: (continued from previous page). We find that our primary study findings that, (1)
large, dense cities facilitate segregation and (2) interaction hub locations accessible to diverse individuals may mitigate
segregation, are robust to the combination of the minimum time, minimum distance, and minimum tie strength threshold
parameters. To account for interactions between threshold parameters, we also consider combinations of parameter
variants. For instance, the most conservative robustness check defines an interaction as two individuals being < 10
meters apart within a < 60 second window, and for this to have occurred either for either 3 consecutive minutes
(second figure from the bottom) or across 3 unique days (bottom figure).
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Supplementary Figure S9: Alternative homophily mechanisms do not explain segregation in large cities. We
consider the possibility of two alternative hypotheses which may explain the trend towards high segregation in large
cities
(a) Constant Homophily: i.e. individuals have the same proclivity for interacting with individuals of similar ES
regardless of if they live in large or small cities, and it is instead change in distribution of economic standing that
drives segregation in large cities (e.g. in large cities there may be a greater supply of people in the same economic
class available to interact with). We test this hypothesis via a null network model, in which which we preserve
network nodes (individuals and their ES values) but randomize edges79, 80. We randomly assign interactions between
pairs of people, weighting the likelihood of interaction between people of similar ES higher according to a constant
homophily function. Specifically, the probability of interaction (pi,j) between two individuals of ESi and ESj is
weighted by their similarity in ES, defined as the complement of the normalized Euclidean distance in ES: pi,j ∝
Similarity(ESi, ESj) = 1 − |ESi−ESj |

max(ES)−min(ES) . We choose 75 interactions per person such that the mean number

of interactions per person is 150, which corresponds to Dunbar’s number81. We find that under this null model, there
is no positive association between interaction segregation and population size; in fact, larger cities are less segregated
on average, as there is an increase in supply of diverse individuals in economic standing in larger cities. These findings
are also robust to a variety of null model specifications (Supplementary Figure S10).
(b) Between Activity Homophily: i.e. it is not the differentiation of individual venues that drives segregation, but rather
that in large cities individuals choose different categories of activities which results in segregation (e.g. in small cities,
there are less country clubs so everybody visits restaurants to socialize, whereas in large cities high-ES individuals
segregate by spending a higher proportion of time in exclusive venues such as country clubs). We test this hypothesis
via a configuration model79, 80, a prominent null network model in which node degree is preserved. Specifically, by
applying a configuration model to reconfigure network edges for each leisure category separately, we preserve network
nodes (individuals and their ES values) as well as the number of interactions they had in each category of POI (node
degree), but randomize the specific venue in which each interaction occurred. For instance, if an individual interacts
with 5 people inside of restaurants and 100 people inside of a fitness center, they will be randomly assigned to interact
with 5 people from all of those who visited restaurants, and 100 people from all of those who visited fitness centers.
This null model preserves between-activity homophily which results from activity choices (e.g. whether to visit a
country club or restaurant), but erases within-activity homophily (e.g. individuals who visit any restaurant are equally
likely to interact). We find that under this null model, there is no positive association between interaction segregation
and population size; in fact, there is minimal segregation across all cities as variation between activity categories is
insufficient to retain segregation. This is further supported by Supplementary Table S3, which shows relatively small
differences in ES between participants in different categories of leisure activity (e.g. the lowest ES activity, limited
service restaurants has a median visitor ES of $1,352, the highest ES activity, golf courses and country clubs has a
median visitor ES of $1,648.4).
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      (a)        (b)

      (c)        (d)

      (e)        (f)

Supplementary Figure S10: Baseline Homophily null model results are robust to varying null model specifi-
cations. We re-run the analysis in Supplementary Figure S9a under a variety of null model specifications, and find
that in all cases there is no evidence to suggest that the Constant Homophily hypothesis explains the high segregation
observed in large cities. (a-c) We first consider varying the extent of homophily by adding a constant parameter H
to the homophilous weighting of edges, to exponentially increase/decrease the extent of homophily in our null model
for the probability of individuals i and j interacting: pi,j ∝ Similarity(ESi, ESj)

H . We find that regardless of if
we (a) decrease homophily (H=0.5) or (b-c) increase homophily mildly (H=2) or strongly (H=25), there is no positive
association between population size and segregation in our simulations. In fact, larger cities are less segregated on
average, as there is an increase in supply of diverse individuals in economic standing in larger cities. We also consider
alternative null model specifications such as (d) a softmax homophily function pi,j ∝ eSimilarity(ESi,ESj)∑N

k=1 eSimilarity(ESi,ESk) , (e)
applying the original null model to percentile-scored values economic standing (f) applying the original null model
to percentile-scored values economic standing, and calculating Interaction Segregation using percentile-scored values
economic standing. This suggests that the high segregation in large cities is due to a change in resident behavior,
facilitated by the built environment of large cities, and not an artifact the economic standing distribution in large cities.
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Supplementary Figure S11: Understanding why BI explains Interaction Segregation. We show via an ablation
study that interaction hub locations, in addition to number of hubs and residential segregation, contributes to the
explanatory power of BI. As illustrated in Extended Data Figure 7, BI captures three factors of built environment: (1)
locations of interaction hubs (2) number of interaction hubs and (3) residential segregation. In this analysis, we aim to
disentangle how these three factors contribute to the ability of BI to explain interaction segregation (as measured by
ρ2, the squared Spearman correlation with interaction segregation). We find that number of hubs (orange, ρ2 = 0.436)
and residential segregation (blue, ρ2 = 0.437) are each correlated with interaction segregation. To measure the
combined explanatory power of these two factors within BI, independent of interaction hub locations, we conduct an
ablation study in which we calculate Bridging Index for each MSA, using the actual home location data and number of
interaction hubs for each MSA, but randomize hub locations (light purple, ρ2 = 0.523). For each MSA, we estimate
this value over 1000 random trials. We find that calculating BI using randomized hub locations is a significantly
weaker predictor (p=0.0006<0.01, Steiger’s Z-test) compared to BI values computed using actual hub locations (dark
purple, ρ2 = 0.604). This demonstrates that hub locations contribute to the explanatory power of BI, i.e. BI explains
interaction segregation because it captures the extent to which the locations of hubs in different cities facilitate the
interaction of diverse individuals.
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Supplementary Figure S12: Robustness of BI to definition of ES diversity. We calculate a version of Bridging
Index which uses variance in to operationalize economic diversity: Bridging Index (BI) =

∑K
i=1 |Ci|·V ar(Ci)

|VMSA|·V ar(VMSA) .
This variant of BI explains interaction segregation comparably (Spearman Corr. -0.75 vs. -0.78, both N=382, both
p< 10−4) to our primary measure of BI which uses Gini Index to operationalize economic diversity. Thus, we find
that the ability of Bridging Index to explain interaction segregation is robust to the definition of ES diversity.
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(a)                        (b)

Mean Distance to Nearest Hub (meters)

Supplementary Figure S13: We consider alternative mechanisms through which built environment may miti-
gate interaction segregation. (a) Following the inverse relationship between POI localization and segregation estab-
lished in Extended Data Figure 2a, we consider whether the de-localization of interaction hubs alone can provide an
alternative to BI. We compute mean distance to nearest interaction hub for each MSA, which is the same measure in
Extended Data Figure 2a but calculated for interaction hubs. We find that while hub localization is inversely correlated
with interaction segregation (Spearman Corr -0.44, N=382, p< 10−4), this correlation is significantly less (p < 10−4)
than the correlation between BI and interaction segregation (Spearman Corr -0.78, N=382, p< 10−4). This suggests
that hub bridging, as quantified by BI may be a more promising direction to investigate as a potential mitigator of
segregation. (b) We also consider whether fine-grained POIs may function as bridges between diverse individuals. For
each of the fine-grained leisure POI categories in Figure 1e, we calculate a Bridging Index across all MSAs (using the
same procedure to calculate BI as shown in Extended Data Figure S12, except using fine-grained POI locations instead
of interaction hub locations). For instance, to calculate the Bridging Index for restaurants, we cluster all homes by the
nearest restaurant location, and then calculate: (Restaurant) Bridging Index =

∑K
i=1 |Ri|·Gini Index(Ri)

|VMSA|·Gini Index(VMSA) . After
calculating the bridging index for all fine-grained POI categories and for each of the 382 MSAs, we then measure the
correlation between each bridging index and interaction segregation across all MSAs (as measured by ρ2, the squared
Spearman correlation). We find that BI for hubs provides a stronger correlation (ρ2 = 0.604, horizontal line), than
all other bridging indices which are plotted as points on the scatter-plot in (b). Further, we find that POI categories
which are often located inside or near interaction hubs (co-location, X-axis) have bridging indices which are stronger
predictors of interaction segregation (e.g. for fitness/recreation centers, snack bars etc.). The high correlation between
(Spearman Correlation -0.82, N=17, p < 0.001) between co-location of POIs and bridging index predictive ability
demonstrates asymptotic convergence between all other predictive bridging index metrics and our primary BI mea-
sure. This further suggests that bridging of interaction hubs should be the primary metric of interest for mitigators of
segregation, because other bridging indexes computed for fine-grained POI locations are at best proxies for BI which
leverages higher-level interaction hub locations. Supplementary Figures S14-S16 illustrate the frequent co-location
between hubs and other fine-grained POIs.
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a) Town & County Village, Palo Alto, California

b) Faneuil Hall Marketplace, Boston, MA

Supplementary Figure S14: Examples of interaction hubs in coastal cities of (a) San Francisco Bay Area and
(b) Boston, MA. Hubs frequently contain a diverse assortment of POIs including restaurants, fitness centers/gyms,
grocery stores, etc. and are also frequently hubs around which other POIs are located nearby.
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a) Cross Creek Mall and Surrounding Area, Fayetteville, NC

b) [Zoomed In] Cross Creek Mall, Fayetteville, NC

Supplementary Figure S15: Example of a major hubs in Fayetteville, NC (a) zoomed-out view of hub and
surrounding co-located POIs (b) zoomed-in view of the hub core and businesses contained inside. We find that in
Fayetteville, a city with a high Bridging Index, large hubs contain a variety of POIs which cater to diverse individuals
of both high and low-ES.
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a) The Shoppes at Eastchase, Montgomery, AL

b) Midtown Plaza, Montgomery, AL

Supplementary Figure S16: Examples two hubs in Montgomery, AL which have visitors of predominantly (a)
high economic standing (b) low economic standing. We find that in Montgomery, AL a city with a low Bridging
Index, smaller hubs exist which contain POIs which cater to a narrow band of individuals in a specific economic
stratum. For instance, we find that the nearby grocery store (a) is a Whole Foods Market in the high-ES hub, in
contrast to the (b) Walmart Supercenter in the low-ES hub.
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Supplementary Figure S17: Our model with simulated uniform within-tract crossings is equivalent to the con-
ventional neighbourhood sorting index (NSI). Each point is a Metropolitan Statistical Area (MSA). The y-axis
shows the interaction segregation estimate from the mixed model with a simulated path crossing between every person
in a tract (in our dataset). The x-axis shows the correlation between a person’s ES and the average ES of people in
their tract, which is the neighbourhood sorting index (NSI). As these measures are equivalent, Spearman Corr = 1.0
and Pearson Corr. = 1.0.

Spearman Corr. 0.67
Pearson Corr 0.66
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Supplementary Figure S18: Our segregation measure versus a conventional residential segregation, neighbor-
hood sorting index (NSI). Each point is a Metropolitan Statistical Area (MSA). Regardless of whether we compare
the numerical segregation values (Pearson Correlation 0.67) or the MSA ranking (Spearman Correlation 0.66), only
moderate correlation indicates that our measure is different in kind from residential segregaiton as measured conven-
tionally by NSI.
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Supplementary Figure S19: Segregation decomposed by time.As described in Methods M3, our fine-grained in-
teraction network allows us to decompose our overall interaction segregation into estimates of segregation during
different hours of the day, by filtering for interactions that occurred within a specific hour. In Supplementary Figure
S19, we partition estimates of segregation by 3 hour windows to illustrate how segregation varies throughout the day
(see Supplementary Information). We observe that segregation increases by 61% between the afternoon and early
morning hours. Segregation is lowest during commute and work hours, indicating higher levels of interaction with
people of different SES while at work or otherwise away from home. Segregation is higher during nighttime hours.
This is driven by individuals returning to their home neighborhoods, which are more homogeneous in economic stand-
ing, as we well as mechanically a result of ES being is defined by rent value, such that people who live in the same
household will have the same ES (and thus will be highly segregated).
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(a) Full-Service Restaurants

(b) Snack Bars

(c) Limited-Service Restaurants
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(d) Stadiums

(e) Performing Arts Centers

Supplementary Figure S20: Across many activities, POIs in large cities are more differentiated and conse-
quently more segregated. This figure shows that the trend towards more options, increased differentiation, and con-
sequently higher segregation is consistent across many prominent POI categories. Here we find similar results for the 5
most frequently visited fine-grained Safegraph place features. The analyses for full-service correspond to Figures 2c-
e, and we additionally show the same trend for snack bars, limited-service restaurants, stadiums, and performing arts
centers (ranked 2-5 after full-service restaurants in terms of most frequently visited POIs among Safegraph places).
Across the board, large, densely populated metropolitan areas are associated with increased options and economic
differentiation of POIs, which may facilitate higher self-segregation.
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Dependent variable: Interaction Segregation

(1) (2) (3) (4) (5) (6)

Intercept 0.355∗∗∗ 0.355∗∗∗ 0.355∗∗∗ 0.356∗∗∗ 0.355∗∗∗ 0.355∗∗∗

(0.005) (0.004) (0.004) (0.004) (0.003) (0.003)
Population Density 0.039∗∗∗ 0.024∗∗∗ 0.022∗∗∗ 0.017∗∗∗ 0.017∗∗∗

(0.005) (0.004) (0.004) (0.004) (0.004)
Gini Index (Estimated Rent) 0.064∗∗∗ 0.058∗∗∗ 0.059∗∗∗ 0.049∗∗∗ 0.050∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.003)
Political Alignment (% Democrat in 2016 Election) 0.009∗ 0.006

(0.005) (0.004)
Racial Demographics (% non-Hispanic White) -0.005 0.003

(0.004) (0.003)
Mean ES (Estimated Rent) -0.009∗ -0.003

(0.005) (0.004)
Walkability (Walkscore) 0.002 0.001

(0.003) (0.004)
Commutability (% Commute to Work) -0.012∗∗∗ -0.013∗∗∗

(0.004) (0.004)
Conventional Segregation (NSI) 0.048∗∗∗ 0.047∗∗∗

(0.003) (0.003)

Observations 382 382 382 376 382 376
R2 0.151 0.419 0.475 0.490 0.682 0.680
Adjusted R2 0.149 0.417 0.472 0.483 0.678 0.673

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Supplementary Table S7: Population density is significantly associated with interaction segregation, after con-
trolling for MSA income inequality (Gini Index), political alignment (% Democrat in 2016 election), racial
demographics (% non-Hispanic White), mean ES, walkability (Walkscore76), commutability (% of residents
commuting to work), and residential segregation (NSI). This table is from an analogous regression to the regres-
sion shown in Extended Data Table 1, using population density instead of population size (we look at each separately
due to co-linearity between population size and density). Here we show the coefficients (after normalizing via z-
scoring to have mean 0 and variance 1) from the primary specifications estimating the effect of population density
on interaction segregation across all MSAs. Columns (1-5) are models specified with different subsets of covariates;
Column 6 shows model specification with all covariates. Differences between sample size in models is due to missing
data for several covariates in a small number of MSAs (Walkscores were not available for all MSAs). (*p < 0.1; **p
< 0.05; *** p < 0.01).
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Supplementary Table S8: Interaction Segregation and related variables (i.e. # Interactions, Mean ES, NSI, Gini
Index, Population Size, and Bridging Index (BI) by MSA

MSA Interaction Segregation # Interactions Mean ES NSI Gini Pop. Size BI

Abilene, TX 0.44 561,896.00 1,245.47 0.63 0.21 170,516.00 0.79
Akron, OH 0.55 2,211,810.00 1,338.21 0.71 0.27 704,367.00 0.65
Albany, GA 0.40 355,999.00 1,077.89 0.47 0.26 151,293.00 0.79
Albany, OR 0.27 153,057.00 1,425.95 0.40 0.11 124,977.00 0.95
Albany-Schenectady-Troy, NY 0.40 2,058,079.00 1,651.16 0.62 0.18 882,130.00 0.81
Albuquerque, NM 0.35 1,979,325.00 1,316.79 0.59 0.19 912,897.00 0.78
Alexandria, LA 0.37 267,228.00 1,011.98 0.52 0.23 153,604.00 0.88
Allentown-Bethlehem-Easton, PA-NJ 0.44 2,629,311.00 1,647.92 0.62 0.19 838,081.00 0.79
Altoona, PA 0.14 199,365.00 799.18 0.59 0.08 123,175.00 0.83
Amarillo, TX 0.45 2,027,531.00 1,358.46 0.62 0.26 264,955.00 0.82
Ames, IA 0.22 178,625.00 1,255.36 0.37 0.19 97,260.00 0.97
Anchorage, AK 0.37 1,189,861.00 1,921.88 0.65 0.17 400,647.00 0.84
Ann Arbor, MI 0.42 984,188.00 2,087.55 0.69 0.19 369,208.00 0.76
Anniston-Oxford-Jacksonville, AL 0.27 498,621.00 949.79 0.43 0.19 114,664.00 0.96
Appleton, WI 0.28 798,727.00 1,201.77 0.60 0.10 236,058.00 0.94
Asheville, NC 0.36 1,449,906.00 1,634.66 0.44 0.18 455,255.00 0.88
Athens-Clarke County, GA 0.26 431,582.00 1,427.27 0.46 0.19 208,997.00 0.83
Atlanta-Sandy Springs-Roswell, GA 0.50 41,054,246.00 1,805.49 0.70 0.22 5,874,249.00 0.62
Atlantic City-Hammonton, NJ 0.55 788,439.00 1,993.59 0.79 0.27 266,328.00 0.59
Auburn-Opelika, AL 0.35 415,339.00 1,409.80 0.44 0.19 161,641.00 0.86
Augusta-Richmond County, GA-SC 0.39 1,698,887.00 1,257.25 0.57 0.21 600,006.00 0.79
Austin-Round Rock, TX 0.53 13,378,670.00 1,954.85 0.70 0.19 2,115,230.00 0.66
Bakersfield, CA 0.29 2,168,162.00 1,399.40 0.69 0.18 888,988.00 0.81
Baltimore-Columbia-Towson, MD 0.61 15,120,132.00 1,898.23 0.80 0.17 2,798,587.00 0.60
Bangor, ME 0.21 56,124.00 1,264.12 0.65 0.17 151,190.00 0.91
Barnstable Town, MA 0.32 556,457.00 2,483.81 0.43 0.18 213,482.00 0.90
Baton Rouge, LA 0.45 3,449,982.00 1,374.01 0.70 0.14 831,182.00 0.81
Battle Creek, MI 0.37 329,581.00 1,013.54 0.66 0.13 134,358.00 0.84
Bay City, MI 0.23 204,294.00 904.87 0.48 0.11 104,189.00 0.97
Beaumont-Port Arthur, TX 0.41 1,935,665.00 1,276.93 0.63 0.16 412,616.00 0.83
Beckley, WV 0.22 61,971.00 988.00 0.41 0.19 118,639.00 0.94
Bellingham, WA 0.18 300,129.00 1,946.31 0.35 0.16 221,650.00 0.95
Bend-Redmond, OR 0.38 257,079.00 1,983.21 0.53 0.17 186,807.00 0.92
Billings, MT 0.36 316,679.00 1,370.83 0.56 0.18 170,740.00 0.91
Binghamton, NY 0.21 325,247.00 1,125.73 0.56 0.16 241,609.00 0.90
Birmingham-Hoover, AL 0.56 7,522,699.00 1,392.29 0.73 0.26 1,149,685.00 0.63
Bismarck, ND 0.18 341,245.00 1,397.18 0.48 0.13 132,418.00 0.95
Blacksburg-Christiansburg-Radford, VA 0.33 260,509.00 1,340.74 0.57 0.17 182,692.00 0.82
Bloomington, IL 0.34 599,796.00 1,245.47 0.62 0.18 188,754.00 0.89
Bloomington, IN 0.35 405,186.00 1,517.20 0.47 0.22 167,513.00 0.91
Bloomsburg-Berwick, PA 0.19 80,784.00 994.00 0.64 0.14 83,924.00 0.94
Boise City, ID 0.41 1,299,521.00 1,584.28 0.60 0.16 710,080.00 0.81
Boston-Cambridge-Newton, MA-NH 0.38 22,163,903.00 2,655.52 0.63 0.16 4,844,597.00 0.70
Boulder, CO 0.36 744,121.00 2,570.91 0.57 0.21 324,073.00 0.84
Bowling Green, KY 0.43 541,630.00 1,227.13 0.59 0.22 174,962.00 0.93
Bremerton-Silverdale, WA 0.40 636,416.00 2,044.31 0.60 0.16 266,550.00 0.77
Bridgeport-Stamford-Norwalk, CT 0.51 3,009,778.00 2,840.03 0.79 0.32 943,457.00 0.53
Brownsville-Harlingen, TX 0.33 1,204,081.00 1,106.57 0.49 0.17 423,181.00 0.88
Brunswick, GA 0.55 345,233.00 1,939.59 0.65 0.33 117,728.00 0.56
Buffalo-Cheektowaga-Niagara Falls, NY 0.41 3,152,570.00 1,285.13 0.68 0.20 1,129,660.00 0.69
Burlington, NC 0.30 489,581.00 1,237.01 0.40 0.21 163,529.00 0.89
Burlington-South Burlington, VT 0.43 140,807.00 1,990.17 0.33 0.16 218,881.00 0.86
California-Lexington Park, MD 0.19 442,775.00 1,739.01 0.35 0.12 112,413.00 0.98
Canton-Massillon, OH 0.41 1,037,327.00 1,235.25 0.38 0.29 399,418.00 0.81
Cape Coral-Fort Myers, FL 0.39 6,067,007.00 1,990.09 0.57 0.27 739,506.00 0.74
Cape Girardeau, MO-IL 0.24 174,129.00 1,013.11 0.36 0.18 96,873.00 0.99
Carbondale-Marion, IL 0.21 182,895.00 855.65 0.37 0.13 125,065.00 0.99
Carson City, NV 0.33 124,126.00 1,700.73 0.59 0.18 54,608.00 0.98
Casper, WY 0.18 103,682.00 1,377.58 0.30 0.21 79,556.00 0.97
Cedar Rapids, IA 0.33 1,010,446.00 1,200.65 0.47 0.14 270,594.00 0.96
Chambersburg-Waynesboro, PA 0.26 158,476.00 1,080.40 0.48 0.10 154,487.00 0.96
Champaign-Urbana, IL 0.32 799,317.00 1,229.14 0.67 0.19 239,877.00 0.88
Charleston, WV 0.25 365,352.00 988.62 0.44 0.21 214,398.00 0.93
Charleston-North Charleston, SC 0.47 4,062,901.00 2,014.52 0.69 0.24 775,089.00 0.66
Charlotte-Concord-Gastonia, NC-SC 0.50 12,750,805.00 1,699.80 0.68 0.24 2,524,863.00 0.64
Charlottesville, VA 0.31 510,779.00 1,840.79 0.50 0.21 233,586.00 0.95
Chattanooga, TN-GA 0.46 2,432,138.00 1,376.30 0.62 0.18 556,081.00 0.86
Cheyenne, WY 0.33 234,335.00 1,450.51 0.67 0.15 98,460.00 0.96
Chicago-Naperville-Elgin, IL-IN-WI 0.44 61,552,971.00 1,943.77 0.66 0.21 9,520,784.00 0.68
Chico, CA 0.29 324,613.00 1,772.67 0.55 0.17 229,207.00 0.92
Cincinnati, OH-KY-IN 0.47 10,110,144.00 1,533.13 0.66 0.22 2,179,858.00 0.76
Clarksville, TN-KY 0.30 989,270.00 1,100.48 0.56 0.16 285,691.00 0.83
Cleveland, TN 0.23 421,419.00 1,072.17 0.33 0.15 122,082.00 0.92
Cleveland-Elyria, OH 0.54 6,830,481.00 1,385.15 0.68 0.25 2,058,549.00 0.63
Coeur d’Alene, ID 0.13 243,473.00 1,680.34 0.32 0.15 157,485.00 0.97
College Station-Bryan, TX 0.40 1,243,139.00 1,430.02 0.59 0.18 258,825.00 0.87
Colorado Springs, CO 0.42 2,666,493.00 1,758.07 0.64 0.16 725,438.00 0.72
Columbia, MO 0.36 425,486.00 1,194.35 0.50 0.20 178,523.00 0.86
Columbia, SC 0.42 3,047,549.00 1,390.00 0.59 0.21 825,110.00 0.81
Columbus, GA-AL 0.47 724,780.00 1,143.38 0.72 0.24 303,436.00 0.74
Columbus, IN 0.41 250,666.00 1,411.07 0.55 0.22 82,429.00 0.94
Columbus, OH 0.55 9,849,191.00 1,623.39 0.71 0.23 2,082,475.00 0.69

Continued on next page
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Supplementary Table S8: (cont’d) Interaction Segregation and related variables (i.e. # Interactions, Mean ES, NSI,
Gini Index, Population Size, and Bridging Index (BI) by MSA

MSA Interaction Segregation # Interactions Mean ES NSI Gini Pop. Size BI

Corpus Christi, TX 0.50 2,288,424.00 1,487.67 0.72 0.16 453,684.00 0.79
Corvallis, OR 0.24 104,179.00 1,936.53 0.48 0.15 91,567.00 0.97
Crestview-Fort Walton Beach-Destin, FL 0.43 1,868,711.00 1,852.07 0.53 0.24 271,959.00 0.76
Cumberland, MD-WV 0.26 30,347.00 936.53 0.51 0.14 98,566.00 0.98
Dallas-Fort Worth-Arlington, TX 0.51 48,228,424.00 1,996.27 0.73 0.22 7,407,944.00 0.62
Dalton, GA 0.14 235,701.00 876.66 0.89 0.14 143,872.00 0.77
Danville, IL 0.24 70,716.00 693.62 0.73 0.05 77,776.00 0.96
Daphne-Fairhope-Foley, AL 0.34 1,066,095.00 1,602.47 0.41 0.16 212,619.00 0.96
Davenport-Moline-Rock Island, IA-IL 0.45 945,921.00 1,287.37 0.70 0.22 381,854.00 0.76
Dayton, OH 0.49 2,617,342.00 1,278.37 0.70 0.25 803,713.00 0.73
Decatur, AL 0.29 403,755.00 981.61 0.42 0.12 151,888.00 0.94
Decatur, IL 0.35 233,031.00 919.63 0.76 0.15 105,533.00 0.86
Deltona-Daytona Beach-Ormond Beach, FL 0.33 5,092,950.00 1,686.87 0.46 0.18 648,117.00 0.82
Denver-Aurora-Lakewood, CO 0.35 11,589,449.00 2,312.40 0.67 0.17 2,892,979.00 0.77
Des Moines-West Des Moines, IA 0.46 1,966,610.00 1,577.32 0.53 0.22 645,100.00 0.76
Detroit-Warren-Dearborn, MI 0.57 15,495,989.00 1,554.43 0.77 0.26 4,321,704.00 0.49
Dothan, AL 0.33 466,788.00 1,142.03 0.45 0.23 147,923.00 0.89
Dover, DE 0.26 462,113.00 1,471.35 0.34 0.13 176,445.00 0.93
Dubuque, IA 0.36 201,954.00 1,313.10 0.57 0.18 97,009.00 0.86
Duluth, MN-WI 0.44 458,229.00 1,373.15 0.67 0.21 278,659.00 0.74
Durham-Chapel Hill, NC 0.44 2,019,082.00 1,713.50 0.57 0.19 566,491.00 0.83
East Stroudsburg, PA 0.24 452,426.00 1,526.37 0.39 0.12 168,089.00 0.95
Eau Claire, WI 0.18 377,072.00 1,114.77 0.41 0.11 167,436.00 0.95
El Centro, CA 0.18 271,797.00 1,340.14 0.69 0.12 181,574.00 0.96
El Paso, TX 0.32 1,667,796.00 1,157.84 0.60 0.17 845,145.00 0.76
Elizabethtown-Fort Knox, KY 0.19 245,608.00 1,241.61 0.24 0.22 150,531.00 0.91
Elkhart-Goshen, IN 0.37 567,181.00 1,186.01 0.41 0.17 204,310.00 0.89
Elmira, NY 0.36 121,786.00 1,173.73 0.58 0.20 84,874.00 0.78
Enid, OK 0.38 320,003.00 1,102.25 0.59 0.24 61,492.00 0.89
Erie, PA 0.34 571,583.00 1,129.58 0.61 0.21 273,892.00 0.85
Eugene, OR 0.29 514,167.00 1,600.88 0.49 0.15 375,617.00 0.93
Evansville, IN-KY 0.47 751,625.00 1,240.07 0.60 0.26 314,960.00 0.80
Fairbanks, AK 0.16 60,754.00 1,619.53 0.36 0.12 99,725.00 0.99
Fargo, ND-MN 0.30 816,028.00 1,333.79 0.52 0.12 241,619.00 0.92
Farmington, NM 0.28 67,876.00 1,265.57 0.52 0.17 126,902.00 0.98
Fayetteville, NC 0.27 1,253,869.00 1,082.27 0.48 0.19 385,380.00 0.90
Fayetteville-Springdale-Rogers, AR-MO 0.43 1,854,285.00 1,371.30 0.60 0.18 538,412.00 0.91
Flagstaff, AZ 0.31 184,120.00 2,012.92 0.42 0.15 141,107.00 0.96
Flint, MI 0.50 981,799.00 1,063.23 0.72 0.22 407,673.00 0.58
Florence, SC 0.37 312,804.00 1,335.06 0.49 0.21 205,546.00 0.93
Florence-Muscle Shoals, AL 0.22 331,068.00 912.14 0.50 0.14 147,100.00 0.97
Fond du Lac, WI 0.19 220,305.00 873.95 0.47 0.09 102,371.00 0.92
Fort Collins, CO 0.28 926,669.00 1,916.57 0.43 0.13 343,993.00 0.91
Fort Smith, AR-OK 0.32 638,594.00 887.85 0.60 0.16 281,990.00 0.93
Fort Wayne, IN 0.50 1,475,260.00 1,342.98 0.69 0.25 434,001.00 0.66
Fresno, CA 0.35 2,137,796.00 1,471.73 0.69 0.18 986,542.00 0.73
Gadsden, AL 0.30 465,122.00 894.00 0.59 0.19 102,937.00 0.89
Gainesville, FL 0.35 1,165,180.00 1,593.03 0.56 0.22 284,685.00 0.82
Gainesville, GA 0.34 758,361.00 1,756.64 0.32 0.22 199,439.00 0.85
Gettysburg, PA 0.22 205,160.00 1,410.01 0.34 0.10 102,367.00 0.99
Glens Falls, NY 0.27 131,519.00 1,486.70 0.59 0.21 125,917.00 0.84
Goldsboro, NC 0.27 275,443.00 1,088.76 0.28 0.18 123,257.00 0.87
Grand Forks, ND-MN 0.33 184,078.00 1,228.24 0.57 0.21 102,277.00 0.98
Grand Island, NE 0.25 236,404.00 1,138.90 0.40 0.14 84,862.00 1.00
Grand Junction, CO 0.32 248,844.00 1,410.36 0.59 0.16 151,406.00 0.88
Grand Rapids-Wyoming, MI 0.40 2,808,054.00 1,540.98 0.65 0.16 1,060,326.00 0.71
Grants Pass, OR 0.19 84,482.00 1,601.76 0.38 0.14 86,653.00 1.00
Great Falls, MT 0.27 156,642.00 1,210.84 0.51 0.13 81,604.00 1.00
Greeley, CO 0.44 749,425.00 1,912.90 0.57 0.14 305,274.00 0.79
Green Bay, WI 0.44 1,141,954.00 1,416.76 0.71 0.21 319,786.00 0.86
Greensboro-High Point, NC 0.48 2,269,305.00 1,226.69 0.67 0.26 763,486.00 0.69
Greenville, NC 0.36 702,454.00 1,259.95 0.34 0.22 178,617.00 0.94
Greenville-Anderson-Mauldin, SC 0.46 2,888,574.00 1,383.12 0.56 0.21 895,422.00 0.82
Gulfport-Biloxi-Pascagoula, MS 0.35 1,349,098.00 1,223.72 0.49 0.18 394,322.00 0.92
Hagerstown-Martinsburg, MD-WV 0.32 599,583.00 1,349.39 0.54 0.16 265,295.00 0.96
Hammond, LA 0.31 354,092.00 1,182.56 0.38 0.14 132,322.00 0.94
Hanford-Corcoran, CA 0.22 253,730.00 1,343.94 0.62 0.15 149,696.00 0.96
Harrisburg-Carlisle, PA 0.39 1,555,132.00 1,467.19 0.54 0.19 571,101.00 0.78
Harrisonburg, VA 0.26 290,643.00 1,278.25 0.42 0.16 134,220.00 0.95
Hartford-West Hartford-East Hartford, CT 0.43 2,241,050.00 1,710.35 0.66 0.18 1,206,719.00 0.77
Hattiesburg, MS 0.37 311,274.00 1,156.01 0.70 0.16 148,719.00 0.83
Hickory-Lenoir-Morganton, NC 0.41 640,647.00 1,244.75 0.47 0.18 367,004.00 0.91
Hilton Head Island-Bluffton-Beaufort, SC 0.39 732,993.00 2,115.09 0.53 0.21 214,890.00 0.82
Hinesville, GA 0.20 138,926.00 1,134.33 0.29 0.13 80,518.00 0.97
Homosassa Springs, FL 0.30 528,334.00 1,417.05 0.46 0.21 145,512.00 0.94
Hot Springs, AR 0.34 274,972.00 1,162.56 0.39 0.23 98,444.00 0.89
Houma-Thibodaux, LA 0.29 511,209.00 1,159.51 0.65 0.12 209,893.00 0.83
Houston-The Woodlands-Sugar Land, TX 0.47 63,151,024.00 1,866.72 0.72 0.22 6,905,695.00 0.66
Huntington-Ashland, WV-KY-OH 0.34 860,612.00 1,069.95 0.49 0.18 355,582.00 0.87
Huntsville, AL 0.45 1,623,341.00 1,313.85 0.66 0.20 455,741.00 0.81
Idaho Falls, ID 0.25 212,821.00 1,219.23 0.54 0.14 145,792.00 0.95
Indianapolis-Carmel-Anderson, IN 0.52 10,182,520.00 1,466.08 0.68 0.24 2,026,723.00 0.64
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Supplementary Table S8: (cont’d) Interaction Segregation and related variables (i.e. # Interactions, Mean ES, NSI,
Gini Index, Population Size, and Bridging Index (BI) by MSA

MSA Interaction Segregation # Interactions Mean ES NSI Gini Pop. Size BI

Iowa City, IA 0.36 473,387.00 1,499.89 0.44 0.20 171,470.00 0.97
Ithaca, NY 0.23 130,902.00 1,607.18 0.45 0.14 102,678.00 0.95
Jackson, MI 0.40 294,167.00 1,049.19 0.67 0.15 158,690.00 0.96
Jackson, MS 0.58 1,725,331.00 1,409.20 0.72 0.24 581,552.00 0.68
Jackson, TN 0.40 324,665.00 1,075.77 0.74 0.16 129,186.00 0.82
Jacksonville, FL 0.49 10,861,594.00 1,742.93 0.61 0.24 1,504,841.00 0.64
Jacksonville, NC 0.30 544,185.00 1,162.30 0.45 0.17 194,838.00 0.90
Janesville-Beloit, WI 0.25 328,187.00 1,002.54 0.65 0.10 162,320.00 0.76
Jefferson City, MO 0.24 349,139.00 1,010.56 0.45 0.16 151,298.00 0.96
Johnson City, TN 0.33 357,946.00 1,075.54 0.55 0.17 201,844.00 0.84
Johnstown, PA 0.20 232,779.00 741.42 0.62 0.11 133,054.00 0.98
Jonesboro, AR 0.36 308,755.00 1,106.28 0.64 0.17 131,158.00 0.94
Joplin, MO 0.21 356,202.00 864.53 0.41 0.12 178,330.00 0.97
Kahului-Wailuku-Lahaina, HI 0.22 246,346.00 3,043.60 0.37 0.16 166,491.00 0.97
Kalamazoo-Portage, MI 0.37 910,106.00 1,412.34 0.58 0.14 338,347.00 0.88
Kankakee, IL 0.30 374,176.00 1,249.33 0.70 0.10 110,544.00 0.81
Kansas City, MO-KS 0.54 8,835,941.00 1,541.78 0.75 0.25 2,127,259.00 0.64
Kennewick-Richland, WA 0.37 373,182.00 1,575.53 0.61 0.15 290,570.00 0.88
Killeen-Temple, TX 0.37 1,587,760.00 1,116.71 0.58 0.16 443,653.00 0.87
Kingsport-Bristol-Bristol, TN-VA 0.29 373,431.00 1,097.78 0.46 0.17 306,253.00 0.93
Kingston, NY 0.31 290,633.00 1,750.29 0.47 0.13 178,723.00 0.94
Knoxville, TN 0.43 2,704,521.00 1,467.11 0.60 0.23 875,797.00 0.76
Kokomo, IN 0.31 288,583.00 944.72 0.55 0.16 82,311.00 0.88
La Crosse-Onalaska, WI-MN 0.17 200,045.00 1,144.24 0.54 0.09 136,778.00 0.97
Lafayette, LA 0.39 1,650,845.00 1,126.34 0.67 0.16 490,107.00 0.76
Lafayette-West Lafayette, IN 0.33 768,405.00 1,226.26 0.57 0.16 220,337.00 0.88
Lake Charles, LA 0.27 207,541.00 1,286.99 0.62 0.13 209,256.00 0.88
Lake Havasu City-Kingman, AZ 0.30 321,719.00 1,255.77 0.59 0.18 207,114.00 0.83
Lakeland-Winter Haven, FL 0.31 4,246,971.00 1,435.22 0.43 0.18 685,830.00 0.90
Lancaster, PA 0.28 1,111,168.00 1,304.06 0.54 0.11 541,054.00 0.86
Lansing-East Lansing, MI 0.42 1,146,004.00 1,249.29 0.65 0.19 480,353.00 0.80
Laredo, TX 0.55 682,291.00 1,308.82 0.76 0.18 273,982.00 0.72
Las Cruces, NM 0.27 340,688.00 1,194.16 0.44 0.18 216,186.00 0.97
Las Vegas-Henderson-Paradise, NV 0.27 10,258,483.00 1,703.98 0.51 0.20 2,183,310.00 0.82
Lawrence, KS 0.19 423,826.00 1,417.50 0.47 0.20 120,629.00 0.94
Lawton, OK 0.30 337,308.00 933.32 0.58 0.21 127,589.00 0.88
Lebanon, PA 0.43 276,347.00 1,155.40 0.70 0.13 139,566.00 0.88
Lewiston, ID-WA 0.20 43,087.00 1,309.23 0.23 0.13 62,881.00 0.99
Lewiston-Auburn, ME 0.21 110,078.00 1,111.21 0.53 0.07 107,569.00 0.98
Lexington-Fayette, KY 0.42 2,391,314.00 1,321.56 0.62 0.21 512,732.00 0.85
Lima, OH 0.35 228,949.00 983.20 0.60 0.16 103,069.00 0.95
Lincoln, NE 0.35 1,808,658.00 1,395.51 0.57 0.16 331,179.00 0.87
Little Rock-North Little Rock-Conway, AR 0.51 3,070,717.00 1,192.95 0.72 0.20 737,991.00 0.77
Logan, UT-ID 0.20 154,902.00 1,210.21 0.60 0.10 138,052.00 0.92
Longview, TX 0.35 262,120.00 1,243.45 0.61 0.18 218,594.00 0.86
Longview, WA 0.38 173,605.00 1,459.50 0.52 0.18 106,900.00 1.00
Los Angeles-Long Beach-Anaheim, CA 0.44 110,526,499.00 2,970.24 0.75 0.20 13,298,709.00 0.66
Louisville/Jefferson County, KY-IN 0.51 4,567,106.00 1,436.51 0.67 0.23 1,292,809.00 0.71
Lubbock, TX 0.45 1,549,243.00 1,381.12 0.55 0.22 316,588.00 0.83
Lynchburg, VA 0.31 496,432.00 1,201.66 0.58 0.18 261,954.00 0.84
Macon-Bibb County, GA 0.46 616,989.00 1,232.02 0.58 0.26 229,081.00 0.81
Madera, CA 0.30 249,720.00 1,396.67 0.47 0.14 155,904.00 0.96
Madison, WI 0.37 1,737,217.00 1,628.86 0.60 0.17 654,577.00 0.89
Manchester-Nashua, NH 0.46 929,901.00 2,027.43 0.69 0.18 413,157.00 0.88
Manhattan, KS 0.31 268,899.00 1,285.52 0.38 0.19 97,954.00 0.99
Mankato-North Mankato, MN 0.26 274,393.00 1,407.12 0.35 0.13 100,945.00 0.97
Mansfield, OH 0.30 203,318.00 872.54 0.50 0.12 120,543.00 0.88
McAllen-Edinburg-Mission, TX 0.36 2,672,266.00 1,165.08 0.45 0.22 858,323.00 0.87
Medford, OR 0.32 250,898.00 1,584.27 0.48 0.14 216,761.00 0.93
Memphis, TN-MS-AR 0.56 5,217,305.00 1,409.82 0.74 0.27 1,347,576.00 0.58
Merced, CA 0.24 471,172.00 1,489.37 0.57 0.13 271,340.00 0.92
Miami-Fort Lauderdale-West Palm Beach, FL 0.44 147,998,127.00 2,642.33 0.67 0.28 6,149,687.00 0.70
Michigan City-La Porte, IN 0.31 262,677.00 1,150.07 0.58 0.16 109,911.00 0.93
Midland, MI 0.35 156,234.00 1,161.45 0.63 0.18 83,245.00 0.96
Midland, TX 0.33 821,156.00 2,759.87 0.61 0.19 170,948.00 0.91
Milwaukee-Waukesha-West Allis, WI 0.60 5,452,737.00 1,428.80 0.77 0.24 1,575,151.00 0.63
Minneapolis-St. Paul-Bloomington, MN-WI 0.41 17,181,042.00 1,970.38 0.56 0.18 3,592,669.00 0.78
Missoula, MT 0.20 144,440.00 1,486.18 0.49 0.17 117,863.00 0.96
Mobile, AL 0.28 1,700,477.00 1,102.96 0.52 0.16 414,515.00 0.85
Modesto, CA 0.20 1,396,841.00 1,673.04 0.53 0.12 545,267.00 0.91
Monroe, LA 0.39 420,225.00 1,057.93 0.56 0.25 178,211.00 0.81
Monroe, MI 0.20 298,001.00 1,123.01 0.45 0.08 149,592.00 0.99
Montgomery, AL 0.47 933,055.00 1,116.61 0.73 0.18 374,042.00 0.71
Morgantown, WV 0.28 144,020.00 1,375.31 0.53 0.22 139,739.00 0.99
Morristown, TN 0.35 127,639.00 1,123.38 0.35 0.16 117,843.00 0.95
Mount Vernon-Anacortes, WA 0.29 164,737.00 1,848.65 0.46 0.13 126,026.00 0.99
Muncie, IN 0.34 325,604.00 951.96 0.58 0.19 115,389.00 0.91
Muskegon, MI 0.32 338,931.00 1,059.59 0.50 0.15 173,656.00 0.86
Myrtle Beach-Conway-North Myrtle Beach, SC-NC 0.24 1,937,451.00 1,614.84 0.27 0.22 463,386.00 0.87
Napa, CA 0.19 813,681.00 3,152.52 0.45 0.18 140,386.00 0.95
Naples-Immokalee-Marco Island, FL 0.45 3,239,165.00 3,865.02 0.70 0.36 372,345.00 0.77
Nashville-Davidson–Murfreesboro–Franklin, TN 0.50 10,766,763.00 1,845.97 0.74 0.22 1,900,584.00 0.62
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Supplementary Table S8: (cont’d) Interaction Segregation and related variables (i.e. # Interactions, Mean ES, NSI,
Gini Index, Population Size, and Bridging Index (BI) by MSA

MSA Interaction Segregation # Interactions Mean ES NSI Gini Pop. Size BI

New Bern, NC 0.32 309,000.00 1,270.00 0.47 0.19 125,010.00 0.89
New Haven-Milford, CT 0.37 2,382,587.00 1,669.24 0.53 0.19 857,794.00 0.76
New Orleans-Metairie, LA 0.40 6,489,654.00 1,556.45 0.68 0.16 1,270,465.00 0.81
New York-Newark-Jersey City, NY-NJ-PA 0.40 168,755,438.00 2,597.55 0.69 0.21 19,998,951.00 0.57
Niles-Benton Harbor, MI 0.51 301,883.00 1,248.76 0.78 0.19 154,362.00 0.80
North Port-Sarasota-Bradenton, FL 0.40 6,601,216.00 2,284.53 0.61 0.27 805,139.00 0.73
Norwich-New London, CT 0.27 286,633.00 1,478.91 0.60 0.15 267,826.00 0.87
Ocala, FL 0.30 1,669,292.00 1,370.81 0.39 0.21 353,717.00 0.90
Odessa, TX 0.28 687,081.00 2,187.43 0.54 0.13 157,173.00 0.88
Ogden-Clearfield, UT 0.38 1,513,318.00 1,609.07 0.63 0.15 664,589.00 0.84
Oklahoma City, OK 0.46 11,029,080.00 1,417.61 0.63 0.27 1,383,249.00 0.74
Olympia-Tumwater, WA 0.19 644,378.00 1,873.77 0.37 0.14 280,289.00 0.98
Omaha-Council Bluffs, NE-IA 0.49 3,944,289.00 1,583.10 0.64 0.22 932,217.00 0.69
Orlando-Kissimmee-Sanford, FL 0.42 25,094,242.00 1,870.76 0.57 0.21 2,512,917.00 0.72
Oshkosh-Neenah, WI 0.36 624,252.00 1,196.65 0.58 0.20 170,375.00 0.90
Owensboro, KY 0.36 203,069.00 1,064.78 0.48 0.21 118,543.00 0.95
Oxnard-Thousand Oaks-Ventura, CA 0.34 3,449,664.00 3,029.11 0.67 0.17 850,802.00 0.81
Palm Bay-Melbourne-Titusville, FL 0.43 4,331,998.00 1,826.84 0.52 0.20 588,265.00 0.77
Panama City, FL 0.28 1,089,950.00 2,071.06 0.40 0.20 200,168.00 0.93
Parkersburg-Vienna, WV 0.25 140,256.00 1,096.22 0.37 0.18 90,873.00 0.95
Pensacola-Ferry Pass-Brent, FL 0.42 3,672,000.00 1,405.47 0.55 0.21 487,327.00 0.78
Peoria, IL 0.46 914,882.00 1,178.67 0.63 0.22 371,810.00 0.80
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.53 24,822,104.00 1,802.57 0.74 0.20 6,078,451.00 0.61
Phoenix-Mesa-Scottsdale, AZ 0.48 17,152,709.00 1,746.59 0.75 0.19 4,761,694.00 0.61
Pine Bluff, AR 0.15 171,555.00 759.22 0.52 0.10 90,923.00 0.95
Pittsburgh, PA 0.47 7,756,479.00 1,348.23 0.70 0.24 2,330,283.00 0.72
Pittsfield, MA 0.37 128,317.00 1,477.61 0.52 0.15 126,485.00 0.86
Pocatello, ID 0.28 116,547.00 1,158.04 0.60 0.18 85,641.00 0.97
Port St. Lucie, FL 0.44 4,896,670.00 2,082.29 0.62 0.23 473,192.00 0.72
Portland-South Portland, ME 0.30 493,445.00 1,896.31 0.52 0.16 532,280.00 0.80
Portland-Vancouver-Hillsboro, OR-WA 0.34 6,614,427.00 2,016.66 0.58 0.16 2,456,462.00 0.86
Prescott, AZ 0.38 384,045.00 1,627.89 0.60 0.17 228,055.00 0.88
Providence-Warwick, RI-MA 0.40 5,763,343.00 1,744.07 0.63 0.16 1,617,057.00 0.79
Provo-Orem, UT 0.32 1,219,235.00 1,546.11 0.66 0.13 617,751.00 0.84
Pueblo, CO 0.36 443,458.00 1,270.67 0.65 0.18 166,426.00 0.85
Punta Gorda, FL 0.34 1,184,701.00 1,829.41 0.60 0.21 181,537.00 0.84
Racine, WI 0.42 548,195.00 1,383.27 0.63 0.16 195,949.00 0.79
Raleigh, NC 0.46 8,986,021.00 1,697.93 0.62 0.16 1,334,342.00 0.79
Rapid City, SD 0.32 250,301.00 1,441.12 0.41 0.20 146,869.00 0.88
Reading, PA 0.49 1,036,022.00 1,344.18 0.68 0.18 417,524.00 0.71
Redding, CA 0.23 258,289.00 1,573.52 0.43 0.19 179,539.00 0.99
Reno, NV 0.47 1,550,552.00 1,953.99 0.63 0.18 461,336.00 0.70
Richmond, VA 0.49 4,524,531.00 1,626.59 0.71 0.20 1,292,911.00 0.68
Riverside-San Bernardino-Ontario, CA 0.43 19,908,134.00 2,103.34 0.70 0.17 4,570,427.00 0.68
Roanoke, VA 0.38 811,899.00 1,291.22 0.58 0.20 313,488.00 0.80
Rochester, MN 0.33 648,812.00 1,540.01 0.58 0.16 217,828.00 0.94
Rochester, NY 0.45 2,870,914.00 1,536.09 0.66 0.19 1,071,589.00 0.77
Rockford, IL 0.40 946,786.00 1,225.98 0.67 0.18 338,252.00 0.72
Rocky Mount, NC 0.33 366,999.00 977.64 0.55 0.16 146,769.00 0.81
Rome, GA 0.36 264,276.00 1,078.32 0.39 0.16 97,427.00 0.99
Sacramento–Roseville–Arden-Arcade, CA 0.39 7,101,248.00 2,048.69 0.66 0.15 2,320,381.00 0.70
Saginaw, MI 0.37 355,021.00 927.43 0.70 0.18 191,996.00 0.77
Salem, OR 0.27 670,775.00 1,603.26 0.45 0.12 424,968.00 0.94
Salinas, CA 0.36 952,169.00 2,642.69 0.65 0.17 435,477.00 0.77
Salisbury, MD-DE 0.48 875,922.00 1,462.24 0.68 0.14 404,067.00 0.78
Salt Lake City, UT 0.33 3,468,862.00 1,763.34 0.60 0.15 1,205,238.00 0.77
San Angelo, TX 0.34 380,590.00 1,321.06 0.66 0.14 119,200.00 0.83
San Antonio-New Braunfels, TX 0.53 14,354,046.00 1,596.19 0.70 0.20 2,474,274.00 0.64
San Diego-Carlsbad, CA 0.42 13,807,983.00 2,854.26 0.73 0.20 3,325,468.00 0.71
San Francisco-Oakland-Hayward, CA 0.41 37,492,367.00 3,925.90 0.71 0.21 4,710,693.00 0.68
San Jose-Sunnyvale-Santa Clara, CA 0.37 8,012,471.00 3,766.32 0.78 0.16 1,993,582.00 0.68
San Luis Obispo-Paso Robles-Arroyo Grande, CA 0.22 656,686.00 2,601.39 0.47 0.13 282,838.00 0.94
Santa Cruz-Watsonville, CA 0.27 611,337.00 3,306.01 0.52 0.13 275,105.00 0.85
Santa Fe, NM 0.45 182,572.00 2,075.86 0.61 0.23 149,617.00 0.91
Santa Maria-Santa Barbara, CA 0.52 1,124,975.00 3,039.10 0.75 0.28 445,606.00 0.59
Santa Rosa, CA 0.22 1,144,462.00 2,793.94 0.54 0.11 503,246.00 0.92
Savannah, GA 0.39 1,601,410.00 1,599.94 0.57 0.19 386,337.00 0.83
Scranton–Wilkes-Barre–Hazleton, PA 0.30 1,064,769.00 1,077.93 0.62 0.16 555,645.00 0.90
Seattle-Tacoma-Bellevue, WA 0.44 18,136,495.00 2,474.85 0.64 0.20 3,884,469.00 0.73
Sebastian-Vero Beach, FL 0.52 1,148,601.00 2,259.56 0.71 0.31 154,314.00 0.78
Sebring, FL 0.26 352,266.00 1,291.88 0.31 0.21 104,060.00 0.98
Sheboygan, WI 0.35 220,669.00 1,204.87 0.58 0.10 115,235.00 0.86
Sherman-Denison, TX 0.39 648,078.00 1,321.20 0.46 0.14 131,214.00 0.95
Shreveport-Bossier City, LA 0.50 1,110,198.00 1,247.36 0.65 0.26 439,631.00 0.79
Sierra Vista-Douglas, AZ 0.21 153,651.00 992.99 0.70 0.14 124,990.00 0.93
Sioux City, IA-NE-SD 0.24 383,415.00 1,137.14 0.41 0.14 168,218.00 0.97
Sioux Falls, SD 0.27 733,324.00 1,239.36 0.68 0.13 260,521.00 0.98
South Bend-Mishawaka, IN-MI 0.48 1,021,877.00 1,289.97 0.67 0.26 321,447.00 0.86
Spartanburg, SC 0.39 913,944.00 1,295.96 0.46 0.23 334,130.00 0.93
Spokane-Spokane Valley, WA 0.34 944,039.00 1,472.98 0.58 0.16 563,958.00 0.88
Springfield, IL 0.40 797,160.00 1,152.17 0.79 0.17 209,175.00 0.87
Springfield, MA 0.45 1,422,143.00 1,632.08 0.69 0.16 629,506.00 0.82
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Supplementary Table S8: (cont’d) Interaction Segregation and related variables (i.e. # Interactions, Mean ES, NSI,
Gini Index, Population Size, and Bridging Index (BI) by MSA

MSA Interaction Segregation # Interactions Mean ES NSI Gini Pop. Size BI

Springfield, MO 0.39 1,300,346.00 1,100.41 0.59 0.23 462,300.00 0.85
Springfield, OH 0.39 361,791.00 895.90 0.61 0.18 134,649.00 0.89
St. Cloud, MN 0.23 518,337.00 1,273.69 0.40 0.14 198,106.00 0.95
St. George, UT 0.27 243,300.00 1,715.91 0.35 0.17 165,859.00 0.94
St. Joseph, MO-KS 0.27 258,535.00 916.56 0.69 0.14 126,598.00 0.88
St. Louis, MO-IL 0.51 11,016,511.00 1,413.67 0.72 0.25 2,805,850.00 0.62
State College, PA 0.35 215,274.00 1,600.27 0.54 0.18 162,250.00 0.89
Staunton-Waynesboro, VA 0.24 282,626.00 1,324.76 0.28 0.17 121,984.00 0.94
Stockton-Lodi, CA 0.42 2,116,634.00 1,865.80 0.73 0.15 742,516.00 0.72
Sumter, SC 0.35 237,013.00 1,050.69 0.46 0.21 106,514.00 0.92
Syracuse, NY 0.37 1,932,194.00 1,483.28 0.63 0.19 651,048.00 0.82
Tallahassee, FL 0.45 1,973,991.00 1,428.85 0.71 0.22 383,467.00 0.75
Tampa-St. Petersburg-Clearwater, FL 0.45 24,564,393.00 1,805.89 0.62 0.22 3,091,225.00 0.73
Terre Haute, IN 0.32 369,258.00 930.48 0.48 0.18 170,022.00 0.94
Texarkana, TX-AR 0.30 240,478.00 956.50 0.61 0.12 150,254.00 0.89
The Villages, FL 0.39 786,309.00 1,711.00 0.69 0.12 124,933.00 0.90
Toledo, OH 0.53 1,775,752.00 1,217.56 0.69 0.25 603,830.00 0.63
Topeka, KS 0.43 1,205,672.00 1,084.47 0.64 0.20 233,153.00 0.93
Trenton, NJ 0.64 1,240,113.00 2,005.70 0.85 0.21 368,602.00 0.54
Tucson, AZ 0.39 2,564,383.00 1,362.93 0.73 0.17 1,027,502.00 0.72
Tulsa, OK 0.49 5,223,272.00 1,242.38 0.72 0.20 991,610.00 0.77
Tuscaloosa, AL 0.38 1,468,839.00 1,332.43 0.60 0.18 242,700.00 0.91
Twin Falls, ID 0.27 182,971.00 1,187.85 0.41 0.13 109,037.00 0.98
Tyler, TX 0.27 593,804.00 1,432.30 0.41 0.19 227,460.00 0.87
Urban Honolulu, HI 0.33 1,368,021.00 2,616.52 0.62 0.19 986,429.00 0.85
Utica-Rome, NY 0.31 374,846.00 1,123.98 0.66 0.17 292,336.00 0.80
Valdosta, GA 0.32 380,832.00 1,136.00 0.52 0.23 145,403.00 0.94
Vallejo-Fairfield, CA 0.18 1,878,258.00 2,372.07 0.67 0.11 443,877.00 0.85
Victoria, TX 0.37 374,597.00 1,529.97 0.55 0.20 99,651.00 0.94
Vineland-Bridgeton, NJ 0.37 354,594.00 1,371.71 0.63 0.09 151,748.00 0.90
Virginia Beach-Norfolk-Newport News, VA-NC 0.45 6,944,774.00 1,666.43 0.62 0.20 1,724,876.00 0.75
Visalia-Porterville, CA 0.25 854,866.00 1,309.53 0.48 0.16 463,097.00 0.95
Waco, TX 0.41 1,245,450.00 1,334.52 0.55 0.20 268,550.00 0.89
Walla Walla, WA 0.22 53,561.00 1,448.66 0.39 0.13 64,675.00 1.00
Warner Robins, GA 0.40 600,913.00 1,271.38 0.54 0.20 191,227.00 0.86
Washington-Arlington-Alexandria, DC-VA-MD-WV 0.46 127,482,444.00 2,461.96 0.70 0.18 6,200,001.00 0.71
Waterloo-Cedar Falls, IA 0.38 326,152.00 1,111.17 0.62 0.18 169,553.00 0.84
Watertown-Fort Drum, NY 0.24 113,127.00 1,273.60 0.32 0.15 113,063.00 0.97
Wausau, WI 0.24 299,543.00 1,069.93 0.49 0.12 135,415.00 0.93
Weirton-Steubenville, WV-OH 0.24 235,799.00 823.09 0.52 0.12 118,181.00 0.94
Wenatchee, WA 0.21 126,600.00 1,748.88 0.31 0.14 118,646.00 1.00
Wheeling, WV-OH 0.26 102,043.00 1,100.65 0.53 0.15 141,228.00 0.87
Wichita Falls, TX 0.41 729,999.00 1,253.35 0.53 0.26 151,180.00 0.93
Wichita, KS 0.46 3,213,430.00 1,206.35 0.64 0.23 644,949.00 0.78
Williamsport, PA 0.23 148,520.00 1,025.19 0.38 0.14 113,930.00 0.99
Wilmington, NC 0.46 1,684,931.00 1,859.12 0.58 0.26 289,425.00 0.77
Winchester, VA-WV 0.33 296,124.00 1,560.81 0.50 0.16 138,107.00 0.95
Winston-Salem, NC 0.44 1,872,668.00 1,256.11 0.57 0.22 666,746.00 0.79
Worcester, MA-CT 0.48 2,650,313.00 1,777.27 0.71 0.17 942,303.00 0.74
Yakima, WA 0.33 222,165.00 1,236.55 0.54 0.15 250,377.00 0.88
York-Hanover, PA 0.41 1,303,401.00 1,430.52 0.56 0.18 445,722.00 0.85
Youngstown-Warren-Boardman, OH-PA 0.34 1,336,389.00 951.78 0.64 0.19 541,875.00 0.71
Yuba City, CA 0.29 309,905.00 1,574.77 0.57 0.13 173,213.00 0.89
Yuma, AZ 0.22 271,294.00 1,079.08 0.55 0.17 209,756.00 1.00
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